skip to main content
10.1145/3491101.3519698acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
poster

Assessing the Spatial Distribution of Visual Attention in a Virtual Environment: Development and Validation of a Novel VR-based Attentional Visual Field (AVF) Task

Authors Info & Claims
Published:28 April 2022Publication History

ABSTRACT

Visual attention is critical for everyday task performance and safety. The Attentional Visual Field Task (AVF) is an established, computerized method for assessing the distribution of visual attention across a wide visual field. High-fidelity virtual reality (VR) presents an opportunity for more ecological methods for assessing and training visual attention; however, this novel approach has not been examined. We developed a new VR-based AVF task, AVF-VE, using a Head-Mounted Display (HMD) VR device with an integrated eye-tracker, and conducted a study to validate this newly developed visual attention task. We further examined how visual attention is distributed in a virtual visual field. The findings suggest that the VR-based visual attention task is a valid and useful tool that can be used for future attention research and training. Unique characteristics of the spatial distribution of visual attention in the virtual environment observed in the current evaluation study are discussed.

Skip Supplemental Material Section

Supplemental Material

3491101.3519698-talk-video.mp4

mp4

7.5 MB

References

  1. K. Ball, C. Owsley, M. E. Sloane, D. L. Roenker, and J. R. Bruni. 1993. Visual attention problems as a predictor of vehicle crashes in older drivers. Investig. Ophthalmol. Vis. Sci. 34, 11 (1993), 3110–3123.Google ScholarGoogle Scholar
  2. Karlene K. Ball, Bettina L. Beard, Daniel L. Roenker, Richard L. Miller, and David S. Griggs. 1988. Age and visual search: expanding the useful field of view. J. Opt. Soc. Am. A 5, 12 (1988), 2210. DOI:https://doi.org/10.1364/josaa.5.002210Google ScholarGoogle ScholarCross RefCross Ref
  3. Alexia Bourgeois, Emmanuel Badier, Naem Baron, Fabien Carruzzo, and Patrik Vuilleumier. 2018. Influence of reward learning on visual attention and eye movements in a naturalistic environment: A virtual reality study. PLoS One 13, 12 (2018), 1–16. DOI:https://doi.org/10.1371/journal.pone.0207990Google ScholarGoogle ScholarCross RefCross Ref
  4. Aimee Teo Broman, Sheila K. West, Beatriz Muñoz, Karen Bandeen-Roche, Gary S. Rubin, and Kathleen A. Turano. 2004. Divided visual attention as a predictor of bumping while walking: The Salisbury Eye Evaluation. Investig. Ophthalmol. Vis. Sci. 45, 9 (2004), 2955–2960. DOI:https://doi.org/10.1167/iovs.04-0219Google ScholarGoogle ScholarCross RefCross Ref
  5. Marisa Carrasco. 2011. Visual attention: The past 25 years. Vision Res. 51, 13 (2011), 1484–1525. DOI:https://doi.org/10.1016/j.visres.2011.04.012Google ScholarGoogle ScholarCross RefCross Ref
  6. Marisa Carrasco and Irene Chang. 1995. The interaction of objective and subjective organizations in a localization search task. Percept. Psychophys. 57, 8 (1995), 1134–1150. DOI:https://doi.org/10.3758/BF03208370Google ScholarGoogle ScholarCross RefCross Ref
  7. Marisa Carrasco and Karen S. Frieder. 1997. Cortical magnification neutralizes the eccentricity effect in visual search. Vision Res. 37, 1 (1997), 63–82. DOI:https://doi.org/10.1016/S0042-6989(96)00102-2Google ScholarGoogle ScholarCross RefCross Ref
  8. HeeSun Choi, Daniel Grühn, and Jing Feng. 2015. Self-reported attentional failures during driving relates to on-road crashes and simulated driving performance of older drivers. Transp. Res. Board 919 (2015), 16p. Retrieved from http://www.jfenglab.com/uploads/1/1/9/7/119733837/choi_et_al_2015_trb15-5079.pdf%0A; https://trid.trb.org/view/1339022Google ScholarGoogle Scholar
  9. Olivio J. Clay, Virginia G. Wadley, Jerri D. Edwards, David L. Roth, Daniel L. Roenker, and Karlene K. Ball. 2005. Cumulative meta-analysis of the relationship between useful field of view and driving performance in older adults: Current and future implications. Optom. Vis. Sci. 82, 8 (2005), 724–731. DOI:https://doi.org/10.1097/01.opx.0000175009.08626.65Google ScholarGoogle ScholarCross RefCross Ref
  10. Howard Egeth and Daniel Kahneman. 1975. Attention and Effort. DOI:https://doi.org/10.2307/1421603Google ScholarGoogle Scholar
  11. Jing Feng, Fergus I.M. Craik, Brian Levine, Sylvain Moreno, Gary Naglie, and Hee Sun Choi. 2017. Differential age-related changes in localizing a target among distractors across an extended visual field. Eur. J. Ageing 14, 2 (2017), 167–177. DOI:https://doi.org/10.1007/s10433-016-0399-7Google ScholarGoogle ScholarCross RefCross Ref
  12. Jing Feng and Ian Spence. 2014. Upper visual field advantage in localizing a target among distractors. Iperception. 5, 2 (2014), 97–100. DOI:https://doi.org/10.1068/i0625repGoogle ScholarGoogle Scholar
  13. Shirin E. Hassan, Kathleen A. Turano, Beatriz Muñoz, Cynthia Munro, Karen Bandeen Roche, and Sheila K. West. 2008. Cognitive and vision loss affects the topography of the attentional visual field. Investig. Ophthalmol. Vis. Sci. 49, 10 (2008), 4672–4678. DOI:https://doi.org/10.1167/iovs.07-1112Google ScholarGoogle ScholarCross RefCross Ref
  14. Jan Horský. 2020. Crowdsourcing VR headset data VR headset database. Retrieved from https://www.infinite.cz/projects/HMD-tester-virtual-reality-headset-database-utilityGoogle ScholarGoogle Scholar
  15. Jan Horský. 2020. VR field of view measured and explained. Retrieved from https://www.infinite.cz/blog/VR-Field-of-View-measured-explainedGoogle ScholarGoogle Scholar
  16. J. Adam Jones, J. Edward Swan, and Mark Bolas. 2013. Peripheral stimulation and its effect on perceived spatial scale in virtual environments. IEEE Trans. Vis. Comput. Graph. 19, 4 (2013), 701–710. DOI:https://doi.org/10.1109/TVCG.2013.37Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Mel Slater Martin Usoh and Anthony Steed. 1995. Taking Steps: The Influence of a Walking Technique on Presence in Virtual Reality. ACM Trans. Comput. Interact. 2, 3 (1995), 201–219. DOI:https://doi.org/10.1145/210079.210084Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. A. McMains and S. Kastner. 2009. Visual attention. In Encyclopedia of neuroscience. 4296–4302.Google ScholarGoogle Scholar
  19. Renee S. Myers, Karlene K. Ball, Thomas D. Kalina, David L. Roth, and Kathryn T. Goode. 2000. Relation of useful field of view and other screening tests to on-road driving performance. Percept. Mot. Skills 91, 1 (2000), 279–290. DOI:https://doi.org/10.2466/pms.2000.91.1.279Google ScholarGoogle ScholarCross RefCross Ref
  20. [1] Cynthia Owsley, Karlene Ball, and Dewanna M. Keeton. 1995. Relationship between visual sensitivity and target localization in older adults. Vision Res. 35, 4 (1995), 579–587. DOI:https://doi.org/10.1016/0042-6989(94)00166-JGoogle ScholarGoogle ScholarCross RefCross Ref
  21. Michael I Posner. 1980. Orienting or attention. Q. J. Exp. Psychol. 32, July 1979 (1980), 3–25.Google ScholarGoogle ScholarCross RefCross Ref
  22. Fred H. Previc. 1990. Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. Behav. Brain Sci. 13, 3 (1990), 519–542. DOI:https://doi.org/10.1017/S0140525X00080018Google ScholarGoogle ScholarCross RefCross Ref
  23. Eric Richards, Patrick J. Bennett, and Allison B. Sekuler. 2006. Age related differences in learning with the useful field of view. Vision Res. 46, 25 (2006), 4217–4231. DOI:https://doi.org/10.1016/j.visres.2006.08.011Google ScholarGoogle ScholarCross RefCross Ref
  24. Allison B. Sekuler, Patrick J. Bennett, and Mortimer Mamelak. 2000. Effects of aging on the useful field of view. Exp. Aging Res. 26, 2 (2000), 103–120. DOI:https://doi.org/10.1080/036107300243588Google ScholarGoogle ScholarCross RefCross Ref
  25. Vincent Sitzmann, Ana Serrano, Amy Pavel, Maneesh Agrawala, Diego Gutierrez, Belen Masia, and Gordon Wetzstein. 2018. Saliency in VR: How Do People Explore Virtual Environments? IEEE Trans. Vis. Comput. Graph. 24, 4 (2018), 1633–1642. DOI:https://doi.org/10.1109/TVCG.2018.2793599Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jeremy M Wolfe, Patricia O'Neill, and Sara C Bennett. 1998. Why are there Eccentricity Effects in Visual Search? Percept. Psychophys. 60, 1 (1998), 140–156.Google ScholarGoogle ScholarCross RefCross Ref
  27. Bochao Li, Anthony Nordman, James Walker, and Scott A. Kuhl. 2016. The effects of artificially reduced field of view and peripheral frame stimulation on distance judgments in HMDs. Proc. ACM Symp. Appl. Perception, SAP 2016 (2016), 53–56. DOI:https://doi.org/10.1145/2931002.2931013Google ScholarGoogle Scholar
  28. Bochao Li, Ruimin Zhang, Anthony Nordman, and Scott A. Kuhl. 2015. The effects of minification and display field of view on distance judgments in real and HMD-based environments. Proc. - SAP 2015 ACM SIGGRAPH Symp. Appl. Percept. (2015), 55–58. DOI:https://doi.org/10.1145/2804408.2804427Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    CHI EA '22: Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems
    April 2022
    3066 pages
    ISBN:9781450391566
    DOI:10.1145/3491101

    Copyright © 2022 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 28 April 2022

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • poster
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate6,164of23,696submissions,26%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format