skip to main content
10.1145/3491101.3519710acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
poster

Are Ambient Intelligence and Augmented Reality Two Sides of the Same Coin? Implications for Human-Computer Interaction

Authors Info & Claims
Published:28 April 2022Publication History

ABSTRACT

We revisit the foundational principles of Ambient Intelligence (AmI) and Augmented Reality (AR) environments to discuss the perspective that AmI and AR feature the same vision of computing, as intuited at their origins, despite their recent development into what may appear as two distinct areas of scientific investigation. We focus on three concepts core to both AmI and AR, on which we capitalize to argue that a significant philosophical overlap exists between their visions: (1) the concept of an environment that undergoes a form of augmentation, (2) the indispensable process of an integration involving the environment, and (3) the emergence of a specific form of media congruent with the characteristics of the environment in which they are created, transmitted, and consumed. We draw implications for the science and practice of Human-Computer Interaction regarding new interactive environments enabled by the technologies of AmI and AR used conjointly.

Skip Supplemental Material Section

Supplemental Material

3491101.3519710-talk-video.mp4

mp4

13.2 MB

References

  1. Emile Aarts and Boris de Ruyter. 2009. New Research Perspectives on Ambient Intelligence. Journal of Ambient Intelligence and Smart Environments 1, 1(2009), 5–14. https://doi.org/10.3233/AIS-2009-0001Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Emile Aarts and José Encarnação. 2006. True Visions: The Emergence of Ambient Intelligence. Springer, Berlin. https://doi.org/10.1007/978-3-540-28974-6Google ScholarGoogle ScholarCross RefCross Ref
  3. Emile Aarts and Frits Grotenhuis. 2009. Ambient Intelligence 2.0: Towards Synergetic Prosperity. In Proceedings of Ambient Intelligence. Lecture Notes in Computer Science, vol 5859(AmI ’09). Springer, Berlin, Heidelberg, 1–13. https://doi.org/10.1007/978-3-642-05408-2_1Google ScholarGoogle Scholar
  4. Giovanni Acampora, Diane J. Cook, Parisa Rashidi, and Athanasios V. Vasilakos. 2013. A Survey on Ambient Intelligence in Healthcare. Proc. IEEE 101, 12 (2013), 2470–2494. https://doi.org/10.1109/JPROC.2013.2262913Google ScholarGoogle ScholarCross RefCross Ref
  5. J.C. Augusto, V. Callaghan, D. Cook, A. Kameas, and I. Satoh. 2013. Intelligent Environments: A Manifesto. Hum. Cent. Comput. Inf. Sci. 3, 12 (2013), 1–18. https://doi.org/10.1186/2192-1962-3-12Google ScholarGoogle ScholarCross RefCross Ref
  6. Ronald Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre. 2001. Recent Advances in Augmented Reality. IEEE Computer Graphics and Applications 21, 6 (2001), 34–47. https://doi.org/10.1109/38.963459Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ronald T. Azuma. 1997. A Survey of Augmented Reality. Presence: Teleoper. Virtual Environ. 6, 4 (1997), 355–385. https://doi.org/10.1162/pres.1997.6.4.355Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ronald T. Azuma. 2016. The Most Important Challenge Facing Augmented Reality. Presence: Teleoper. Virtual Environ. 25, 3 (Dec. 2016), 234–238.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ronald T. Azuma. 2019. The Road to Ubiquitous Consumer Augmented Reality Systems. Human Behavior and Emerging Technologies 1, 1 (2019), 26–32. https://doi.org/10.1002/hbe2.113Google ScholarGoogle ScholarCross RefCross Ref
  10. Patrick Baudisch, Henning Pohl, Stefanie Reinicke, Emilia Wittmers, Patrick Lühne, Marius Knaust, Sven Köhler, Patrick Schmidt, and Christian Holz. 2013. Imaginary Reality Gaming: Ball Games without a Ball. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology(UIST ’13). ACM, New York, NY, USA, 405–410. https://doi.org/10.1145/2501988.2502012Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Benjamin B. Bederson. 1995. Audio Augmented Reality: A Prototype Automated Tour Guide. In Conference Companion on Human Factors in Computing Systems. ACM, New York, NY, USA, 210–211. https://doi.org/10.1145/223355.223526Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Carlos Bermejo and Pan Hui. 2021. A Survey on Haptic Technologies for Mobile Augmented Reality. ACM Comput. Surv. 54, 9, Article 184 (oct 2021), 35 pages. https://doi.org/10.1145/3465396Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Mark Billinghurst, Adrian Clark, and Gun Lee. 2015. A Survey of Augmented Reality. Found. Trends Hum.-Comput. Interact. 8, 2–3 (mar 2015), 73–272. https://doi.org/10.1561/1100000049Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Oliver Bimber and Ramesh Raskar. 2005. Spatial Augmented Reality: Merging Real and Virtual Worlds. A. K. Peters, Ltd., USA.Google ScholarGoogle Scholar
  15. Frederik Brudy, Christian Holz, Roman Rädle, Chi-Jui Wu, Steven Houben, Clemens Nylandsted Klokmose, and Nicolai Marquardt. 2019. Cross-Device Taxonomy: Survey, Opportunities and Challenges of Interactions Spanning Across Multiple Devices. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA, 1–28. https://doi.org/10.1145/3290605.3300792Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. George Caridakis and John Aliprantis. 2019. A Survey of Augmented Reality Applications in Cultural Heritage. Int. J. Comput. Methods Herit. Sci. 3, 2 (jul 2019), 118–147. https://doi.org/10.4018/IJCMHS.2019070107Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jongeun Cha, Ian Oakley, Junhun Lee, and Jeha Ryu. 2005. An AR System for Haptic Communication. In Proceedings of the 2005 International Conference on Augmented Tele-Existence(ICAT ’05). ACM, New York, NY, USA, 241–242. https://doi.org/10.1145/1152399.1152444Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Diane J. Cook, Juan C. Augusto, and Vikramaditya R. Jakkula. 2009. Review: Ambient Intelligence: Technologies, Applications, and Opportunities. Pervasive Mob. Comput. 5, 4 (aug 2009), 277–298. https://doi.org/10.1016/j.pmcj.2009.04.001Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Diane J. Cook and WenZhan Song. 2019. Ambient Intelligence and Wearable Computing: Sensors on the Body, in the Home, and Beyond. Journal of Ambient Intelligence and Smart Environments 1, 2(2019), 83–86. https://doi.org/10.3233/AIS-2009-0014Google ScholarGoogle ScholarCross RefCross Ref
  20. Arindam Dey, Mark Billinghurst, Robert W. Lindeman, and J. Edward Swan. 2018. A Systematic Review of 10 Years of Augmented Reality Usability Studies: 2005 to 2014. Front. Robot. AI 5(2018), 37. https://doi.org/10.3389/frobt.2018.00037Google ScholarGoogle ScholarCross RefCross Ref
  21. K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J.-C. Burgelman. 2001. Scenarios for Ambient Intelligence in 2010. https://op.europa.eu/en/publication-detail/-/publication/42f2b572-64c5-4ef3-b9af-2d4de887a254Google ScholarGoogle Scholar
  22. Rob Dunne, Tim Morris, and Simon Harper. 2021. A Survey of Ambient Intelligence. ACM Comput. Surv. 54, 4, Article 73 (may 2021), 27 pages. https://doi.org/10.1145/3447242Google ScholarGoogle Scholar
  23. P. L. Emiliani and C. Stephanidis. 2005. Universal Access to Ambient Intelligence Environments: Opportunities and Challenges for People with Disabilities. IBM Systems Journal 44, 3 (2005), 605–619. https://doi.org/10.1147/sj.443.0605Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Brian Epstein. 1998. Script for Digital Living Room Conference Keynote. https://epstein.org/ambient-intelligence/Google ScholarGoogle Scholar
  25. Rich Gold. 1993. This is Not a Pipe. Commun. ACM 36, 7 (jul 1993), 72. https://doi.org/10.1145/159544.159598Google ScholarGoogle Scholar
  26. Saul Greenberg, Nicolai Marquardt, Till Ballendat, Rob Diaz-Marino, and Miaosen Wang. 2011. Proxemic Interactions: The New Ubicomp?Interactions 18, 1 (jan 2011), 42–50. https://doi.org/10.1145/1897239.1897250Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Adam Greenfield. 2006. Everyware: The Dawning Age of Ubiquitous Computing. Peachpit Press, USA. https://dl.acm.org/doi/10.5555/1199246Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Gabriel Haas, Evgeny Stemasov, Michael Rietzler, and Enrico Rukzio. 2020. Interactive Auditory Mediated Reality: Towards User-Defined Personal Soundscapes. In Proceedings of the 2020 ACM Designing Interactive Systems Conference(DIS ’20). ACM, New York, NY, USA, 2035–2050. https://doi.org/10.1145/3357236.3395493Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Hiroshi Ishii and Brygg Ullmer. 1997. Tangible Bits: Towards Seamless Interfaces between People, Bits and Atoms. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems(CHI ’97). ACM, New York, NY, USA, 234–241. https://doi.org/10.1145/258549.258715Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Hiroshi Ishii, Craig Wisneski, Scott Brave, Andrew Dahley, Matt Gorbet, Brygg Ullmer, and Paul Yarin. 1998. AmbientROOM: Integrating Ambient Media with Architectural Space. In CHI 98 Conference Summary on Human Factors in Computing Systems(CHI ’98). ACM, New York, NY, USA, 173–174. https://doi.org/10.1145/286498.286652Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yuta Itoh, Tobias Langlotz, Jonathan Sutton, and Alexander Plopski. 2021. Towards Indistinguishable Augmented Reality: A Survey on Optical See-through Head-Mounted Displays. ACM Comput. Surv. 54, 6, Article 120 (jul 2021), 36 pages. https://doi.org/10.1145/3453157Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Nor Farzana Syaza Jeffri and Dayang Rohaya Awang Rambli. 2021. A Review of Augmented Reality Systems and Their Effects on Mental Workload and Task Performance. Heliyon 7, 3 (2021), e06277. https://doi.org/10.1016/j.heliyon.2021.e06277Google ScholarGoogle Scholar
  33. Brett Jones, Rajinder Sodhi, Michael Murdock, Ravish Mehra, Hrvoje Benko, Andrew Wilson, Eyal Ofek, Blair MacIntyre, Nikunj Raghuvanshi, and Lior Shapira. 2014. RoomAlive: Magical Experiences Enabled by Scalable, Adaptive Projector-Camera Units. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology(UIST ’14). ACM, New York, NY, USA, 637–644. https://doi.org/10.1145/2642918.2647383Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Brett R. Jones, Hrvoje Benko, Eyal Ofek, and Andrew D. Wilson. 2013. IllumiRoom: Peripheral Projected Illusions for Interactive Experiences. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’13). ACM, New York, NY, USA, 869–878. https://doi.org/10.1145/2470654.2466112Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Mohamed Kari, Tobias Grosse-Puppendahl, Alexander Jagaciak, David Bethge, Reinhard Schütte, and Christian Holz. 2021. SoundsRide: Affordance-Synchronized Music Mixing for In-Car Audio Augmented Reality. In Proceedings of the 34th Annual ACM Symposium on User Interface Software and Technology. ACM, New York, NY, USA, 118–133. https://doi.org/10.1145/3472749.3474739Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Mike Kuniavski. 2010. Smart Things: Ubiquitous Computing User Experience Design. Morgan Kaufmann, MA, USA. https://doi.org/10.1016/C2009-0-20057-2Google ScholarGoogle Scholar
  37. Jean-Yves Lionel Lawson, Jean Vanderdonckt, and Radu-Daniel Vatavu. 2018. Mass-Computer Interaction for Thousands of Users and Beyond. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems(CHI EA ’18). ACM, New York, NY, USA, 1–6. https://doi.org/10.1145/3170427.3188465Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ruijiao Li, Bowen Lu, and Klaus D. McDonald-Maier. 2015. Cognitive Assisted Living Ambient System: A Survey. Digital Communications and Networks 1, 4 (2015), 229–252. https://doi.org/10.1016/j.dcan.2015.10.003Google ScholarGoogle ScholarCross RefCross Ref
  39. Artur Lugmayr, Bjoern Stockleben, Thomas Risse, Juha Kaario, and Bogdan Pogorelc. 2013. New Business, Design and Models to Create Semantic Ambient Media Experiences. Multimedia Tools Appl. 66, 1 (sep 2013), 1–5. https://doi.org/10.1007/s11042-012-1239-1Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. B. MacIntyre, J.D. Bolter, E. Moreno, and B. Hannigan. 2001. Augmented Reality as a New Media Experience. In Proceedings IEEE and ACM International Symposium on Augmented Reality. IEEE, Washington, DC, USA, 197–206. https://doi.org/10.1109/ISAR.2001.970538Google ScholarGoogle ScholarCross RefCross Ref
  41. Wendy E. Mackay. 1998. Augmented Reality: Linking Real and Virtual Worlds: A New Paradigm for Interacting with Computers. In Proceedings of the Working Conference on Advanced Visual Interfaces(AVI ’98). ACM, New York, NY, USA, 13–21. https://doi.org/10.1145/948496.948498Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Nicolai Marquardt, Robert Diaz-Marino, Sebastian Boring, and Saul Greenberg. 2011. The Proximity Toolkit: Prototyping Proxemic Interactions in Ubiquitous Computing Ecologies. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology(UIST ’11). ACM, New York, NY, USA, 315–326. https://doi.org/10.1145/2047196.2047238Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Paul Milgram and Herman Colquhoun Jr.1999. A Taxonomy of Real and Virtual World Display Integration. In Mixed Reality: Merging Real and Virtual Worlds, Yuichi Ohta and Hideyuki Tamura (Eds.). Springer-Verlag, Berlin, Heidelberg.Google ScholarGoogle Scholar
  44. Paul Milgram and Fumio Kishino. 1994. A Taxonomy of Mixed Reality Visual Displays. IEICE Transactions on Information and Systems E77-D, 12 (December 1994), 1321–1329. https://search.ieice.org/bin/summary.php?id=e77-d_12_1321Google ScholarGoogle Scholar
  45. Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino. 1995. Augmented Reality: A Class of Displays on the Reality-Virtuality Continuum. In Proceedings SPIE 2351, Telemanipulator and Telepresence Technologies, Vol. 2351. Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA, 282–292. https://doi.org/10.1117/12.197321Google ScholarGoogle Scholar
  46. PARC. n.d.. Defining Ubiquitous Computing vs. Augmented Reality (and vs. All Other Such Paradigms). Retrieved January 2022 from https://www.parc.com/blog/defining-ubiquitous-computing-vs-augmented-realityGoogle ScholarGoogle Scholar
  47. Florian Perteneder, Eva-Maria Beatrix Grossauer, Joanne Leong, Wolfgang Stuerzlinger, and Michael Haller. 2016. Glowworms and Fireflies: Ambient Light on Large Interactive Surfaces. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems(CHI ’16). ACM, New York, NY, USA, 5849–5861. https://doi.org/10.1145/2858036.2858524Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Philips. n.d.. Philips Ambilight TV. Retrieved January 2022 from https://www.philips.com/c-w/country-selectorpage/tv/tv-ambilight.htmlGoogle ScholarGoogle Scholar
  49. Bogdan Pogorelc, Artur Lugmayr, Bjorn Stockleben, Radu-Daniel Vatavu, Nina Tahmasebi, Estefania Serral, Emilija Stojmenova, Bojan Imperl, Thomas Risse, Gideon Zenz, and Matjaz Gams. 2013. Ambient Bloom: New Business, Content, Design and Models to Increase the Semantic Ambient Media Experience. Multimedia Tools and Applications 66, 1 (2013), 7–32. http://dx.doi.org/10.1007/s11042-012-1228-4Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Bogdan Pogorelc, Radu-Daniel Vatavu, Artur Lugmayr, Bjorn Stockleben, Thomas Risse, Juha Kaario, Estefania Constanza Lomonaco, and Matjaz Gams. 2012. Semantic Ambient Media: From Ambient Advertising to Ambient-Assisted Living. Multimedia Tools and Applications 58, 2 (2012), 399–425. http://dx.doi.org/10.1007/s11042-011-0917-8Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Iulian Radu, Tugce Joy, Yiran Bowman, Ian Bott, and Bertrand Schneider. 2021. A Survey of Needs and Features for Augmented Reality Collaborations in Collocated Spaces. Proc. ACM Hum.-Comput. Interact. 5, CSCW1, Article 169 (apr 2021), 21 pages. https://doi.org/10.1145/3449243Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Parisa Rashidi and Alex Mihailidis. 2013. A Survey on Ambient-Assisted Living Tools for Older Adults. IEEE Journal of Biomedical and Health Informatics 17, 3(2013), 579–590. https://doi.org/10.1109/JBHI.2012.2234129Google ScholarGoogle ScholarCross RefCross Ref
  53. Jun Rekimoto and Katashi Nagao. 1995. The World through the Computer: Computer Augmented Interaction with Real World Environments. In Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology(UIST ’95). ACM, New York, NY, USA, 29–36. https://doi.org/10.1145/215585.215639Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Fariba Sadri. 2011. Ambient Intelligence: A Survey. ACM Comput. Surv. 43, 4, Article 36 (oct 2011), 66 pages. https://doi.org/10.1145/1978802.1978815Google ScholarGoogle Scholar
  55. M. Satyanarayanan. 2001. Pervasive Computing: Vision and Challenges. IEEE Personal Communications 8, 4 (2001), 10–17. https://doi.org/10.1109/98.943998Google ScholarGoogle ScholarCross RefCross Ref
  56. Ovidiu-Andrei Schipor and Radu-Daniel Vatavu. 2018. Invisible, Inaudible, and Impalpable: Users’ Preferences and Memory Performance for Digital Content in Thin Air. IEEE Pervasive Computing 17, 4 (2018), 76–85. https://doi.org/10.1109/MPRV.2018.2873856Google ScholarGoogle ScholarCross RefCross Ref
  57. Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu. 2019. SAPIENS: Towards Software Architecture to Support Peripheral Interaction in Smart Environments. Proc. ACM Hum.-Comput. Interact. 3, EICS, Article 11 (jun 2019), 24 pages. https://doi.org/10.1145/3331153Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Dieter Schmalstieg and Gerhard Reitmayr. 2007. The World as a User Interface: Augmented Reality for Ubiquitous Computing. In Location Based Services and TeleCartography, G. Gartner, W. Cartwright, and M.P. Peterson (Eds.). Springer, Berlin, Heidelberg, 369–391. https://doi.org/10.1007/978-3-540-36728-4_28Google ScholarGoogle Scholar
  59. Albrecht Schmidt and Michael Beigl. 1998. New Challenges of Ubiquitous Computing and Augmented Reality. In Proceedings of the 5th CaberNet Radicals Workshop. https://www.teco.edu/~albrecht/publication/cabernet/ubicomp1.htmlGoogle ScholarGoogle Scholar
  60. Albrecht Schmidt, Hans-Werner Gellersen, and Michael Beigl. 1999. Matching Information and Ambient Media. In Proceedings of the 2nd International Workshop on Cooperative Buildings, Integrating Information, Organization, and Architecture(CoBuild ’99). Springer-Verlag, Berlin, Heidelberg, 140–149. https://doi.org/10.1007/10705432_13Google ScholarGoogle ScholarCross RefCross Ref
  61. Andy P. Siddaway, Alex M. Wood, and Larry V. Hedges. 2019. How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annual Review of Psychology 70, 1 (2019), 747–770. https://doi.org/10.1146/annurev-psych-010418-102803Google ScholarGoogle ScholarCross RefCross Ref
  62. Sanni Siltanen, Maiju Aikala, Sari Järvinen, and Ville Valjus. 2017. Augmented Reality Enriches Print Media and Revitalizes Media Business. Comput. Entertain. 15, 3, Article 4 (apr 2017), 15 pages. https://doi.org/10.1145/2700532Google ScholarGoogle Scholar
  63. Richard Skarbez, Missie Smith, and Mary C. Whitton. 2021. Revisiting Milgram and Kishino’s Reality-Virtuality Continuum. Frontiers in Virtual Reality 2 (2021), 27. https://doi.org/10.3389/frvir.2021.647997Google ScholarGoogle ScholarCross RefCross Ref
  64. Norbert Streitz, Dimitris Charitos, Maurits Kaptein, and Marc Böhlen. 2019. Grand Challenges for Ambient Intelligence and Implications for Design Contexts and Smart Societies. Journal of Ambient Intelligence and Smart Environments 11, 1(2019), 87–107. https://doi.org/10.3233/AIS-180507Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Ivan E. Sutherland. 1968. A Head-Mounted Three Dimensional Display. In Proceedings of the Fall Joint Computer Conference, Part I(AFIPS ’68). ACM, New York, NY, USA, 757–764. https://doi.org/10.1145/1476589.1476686Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Bruce H. Thomas. 2012. A Survey of Visual, Mixed, and Augmented Reality Gaming. Comput. Entertain. 10, 1, Article 3 (dec 2012), 33 pages. https://doi.org/10.1145/2381876.2381879Google ScholarGoogle Scholar
  67. James Vallino and Christopher Brown. 1999. Haptics in Augmented Reality. In Proceedings of the IEEE International Conference on Multimedia Computing and Systems - Volume 2(ICMCS ’99). IEEE Computer Society, USA, 9195. https://doi.org/10.1109/MMCS.1999.779146Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Radu-Daniel Vatavu. 2013. There’s a World Outside Your TV: Exploring Interactions beyond the Physical TV Screen. In Proceedings of the 11th European Conference on Interactive TV and Video(EuroITV ’13). ACM, New York, NY, USA, 143–152. https://doi.org/10.1145/2465958.2465972Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Radu-Daniel Vatavu. 2017. Smart-Pockets: Body-Deictic Gestures for Fast Access to Personal Data during Ambient Interactions. International Journal of Human-Computer Studies 103 (2017), 1–21. http://dx.doi.org/10.1016/j.ijhcs.2017.01.005Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Radu-Daniel Vatavu, Annette Mossel, and Christian Schönauer. 2016. Digital Vibrons: Understanding Users’ Perceptions of Interacting with Invisible, Zero-Weight Matter. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services(MobileHCI ’16). ACM, New York, NY, USA, 217–226. https://doi.org/10.1145/2935334.2935364Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Radu-Daniel Vatavu, Pejman Saeghe, Teresa Chambel, Vinoba Vinayagamoorthy, and Marian F Ursu. 2020. Conceptualizing Augmented Reality Television for the Living Room. In Proceedings of the ACM International Conference on Interactive Media Experiences(IMX ’20). ACM, New York, NY, USA, 1–12. https://doi.org/10.1145/3391614.3393660Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Jo Vermeulen, Jonathan Slenders, Kris Luyten, and Karin Coninx. 2009. I Bet You Look Good on the Wall: Making the Invisible Computer Visible. In Proceedings of the European Conference on Ambient Intelligence(AmI ’09). Springer-Verlag, Berlin, Heidelberg, 196–205. https://doi.org/10.1007/978-3-642-05408-2_24Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Mark Weiser. 1999. The Computer for the 21st Century. SIGMOBILE Mob. Comput. Commun. Rev. 3, 3 (jul 1999), 3–11. https://doi.org/10.1145/329124.329126Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Pierre Wellner, Wendy Mackay, and Rich Gold. 1993. Back to the Real World. Commun. ACM 36, 7 (jul 1993), 24–26. https://doi.org/10.1145/159544.159555Google ScholarGoogle Scholar
  75. Craig Wisneski, Hiroshi Ishii, Andrew Dahley, Matthew G. Gorbet, Scott Brave, Brygg Ullmer, and Paul Yarin. 1998. Ambient Displays: Turning Architectural Space into an Interface between People and Digital Information. In Proceedings of the 1st International Workshop on Cooperative Buildings, Integrating Information, Organization, and Architecture(CoBuild ’98). Springer Verlag, Berlin, Heidelberg, 22–32. https://dl.acm.org/doi/10.5555/645968.674740Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    CHI EA '22: Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems
    April 2022
    3066 pages
    ISBN:9781450391566
    DOI:10.1145/3491101

    Copyright © 2022 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 28 April 2022

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • poster
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate6,164of23,696submissions,26%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format