skip to main content
10.1145/3491101.3519823acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
poster

A Tale of Two Mice: Sustainable Electronics Design and Prototyping

Authors Info & Claims
Published:28 April 2022Publication History

ABSTRACT

Electronics have become integral to all aspects of life and form the physical foundation of computing; however electronic waste (e-waste) is among the fastest growing global waste streams and poses significant health and climate implications. We present a design guideline for sustainable electronics and use it to build a functional computer mouse with a biodegradable printed circuit board and case. We develop an end-to-end digital fabrication process using accessible maker tools to build circuits on biodegradable substrates that reduce embodied carbon and toxic waste. Our biodegradable circuit board sends data over USB at 800 kbps and generates 12 MHz signals without distortion. Our circuit board dissolves in water (in 5.5 min at 100 °C, 5 hrs at 20 °C) and we successfully recover and reuse two types of chips after dissolving. We also present an environmental assessment showing our design reduces the environmental carbon impact (kg CO2e) by 60.2% compared to a traditional mouse.

References

  1. U.S. Environmental Protection Agency. 2012. Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI). https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-traciGoogle ScholarGoogle Scholar
  2. Eli Blevis. 2007. Sustainable interaction design: invention & disposal, renewal & reuse. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’07). Association for Computing Machinery, San Jose, California, USA, 503–512. https://doi.org/10.1145/1240624.1240705Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Saravanan Chandrasekaran, Maria Sotenko, Alvaro Cruz-Izquierdo, Zuhayr Rymansaib, Pejman Iravani, Kerry Kirwan, and Janet L. Scott. 2021. Preparation of Printable and Biodegradable Cellulose-Laponite Composite for Electronic Device Application. Journal of Polymers and the Environment 29, 1 (Jan. 2021), 17–27. https://doi.org/10.1007/s10924-020-01854-0Google ScholarGoogle ScholarCross RefCross Ref
  4. Ting-Jung Chang, Zhuozhi Yao, Paul J. Jackson, Barry P. Rand, and David Wentzlaff. 2017. Architectural tradeoffs for biodegradable computing. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture(MICRO-50 ’17). Association for Computing Machinery, Cambridge, Massachusetts, 706–717. https://doi.org/10.1145/3123939.3123980Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Tingyu Cheng, Koya Narumi, Youngwook Do, Yang Zhang, Tung D Ta, Takuya Sasatani, Eric Markvicka, Yoshihiro Kawahara, Lining Yao, Gregory D Abowd, 2020. Silver tape: Inkjet-printed circuits peeled-and-transferred on versatile substrates. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 1 (2020), 1–17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Erdem Cil and Sema Dumanli. 2020. The Design of a Reconfigurable Slot Antenna Printed on Glass for Wearable Applications. IEEE Access 8(2020), 95417–95423. https://doi.org/10.1109/ACCESS.2020.2996020Google ScholarGoogle ScholarCross RefCross Ref
  7. WillowFlex 3D Print Filament. 2022. Compostable Filament for 3D printing. https://www.willow-flex.com/compostable-filament/Google ScholarGoogle Scholar
  8. Fillamentum. 2022. Fillamentum NonOilen. https://www.fillamentumnonoilen.com/Google ScholarGoogle Scholar
  9. Vanessa Forti, Cornelis Peter Balde, Ruediger Kuehr, and Garam Bel. 2020. The Global E-waste Monitor 2020: Quantities, flows, and the circular economy potential. Technical Report. United Nations University/United Nations Institute for Training and Research. 120 pages. http://ewastemonitor.info/download-2020/Google ScholarGoogle Scholar
  10. Ellen MacArthur Foundation. 2019. Circular economy diagram. https://ellenmacarthurfoundation.org/circular-economy-diagramGoogle ScholarGoogle Scholar
  11. Jeremy L Fredricks, Hareesh Iyer, Robin McDonald, Jeffrey Hsu, Andrew M Jimenez, and Eleftheria Roumeli. 2021. Spirulina-based composites for 3D-printing. Journal of Polymer Science 59, 22 (2021), 2878–2894.Google ScholarGoogle ScholarCross RefCross Ref
  12. Daniel Groeger and Jürgen Steimle. 2018. ObjectSkin: augmenting everyday objects with hydroprinted touch sensors and displays. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 4 (2018), 1–23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Vijay Kumar Guna, Geethapriya Murugesan, Bhuvaneswari Hulikal Basavarajaiah, Manikandan Ilangovan, Sharon Olivera, Venkatesh Krishna, and Narendra Reddy. 2016. Plant-Based Completely Biodegradable Printed Circuit Boards. IEEE Transactions on Electron Devices 63, 12 (Dec. 2016), 4893–4898. https://doi.org/10.1109/TED.2016.2619983Google ScholarGoogle ScholarCross RefCross Ref
  14. Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee, Gu-Yeon Wei, David Brooks, and Carole-Jean Wu. 2021. Chasing Carbon: The Elusive Environmental Footprint of Computing. In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 854–867.Google ScholarGoogle Scholar
  15. Mohammad Haerinia and Sima Noghanian. 2019. Design of Hybrid Wireless Power Transfer and Dual Ultrahigh-Frequency Antenna System. In 2019 URSI International Symposium on Electromagnetic Theory (EMTS). 1–4. https://doi.org/10.23919/URSI-EMTS.2019.8931514Google ScholarGoogle Scholar
  16. Won Bae Han, Gwan-Jin Ko, Jeong-Woong Shin, and Suk-Won Hwang. 2020. Advanced manufacturing for transient electronics. MRS Bulletin 45, 2 (Feb. 2020), 113–120. https://doi.org/10.1557/mrs.2020.22Google ScholarGoogle ScholarCross RefCross Ref
  17. Lon Åke Erni Johannes Hansson, Teresa Cerratto Pargman, and Daniel Sapiens Pargman. 2021. A Decade of Sustainable HCI: Connecting SHCI to the Sustainable Development Goals. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, Yokohama Japan, 1–19. https://doi.org/10.1145/3411764.3445069Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Xian Huang, Yuhao Liu, Suk-Won Hwang, Seung-Kyun Kang, Dwipayan Patnaik, Jonathan Fajardo Cortes, and John A. Rogers. 2014. Biodegradable Materials for Multilayer Transient Printed Circuit Boards. Advanced Materials 26, 43 (2014), 7371–7377. https://doi.org/10.1002/adma.201403164Google ScholarGoogle ScholarCross RefCross Ref
  19. Ayaka Ishii, Kunihiro Kato, Kaori Ikematsu, Yoshihiro Kawahara, and Itiro Siio. 2021. Fabricating Wooden Circuit Boards by Laser Beam Machining. In The Adjunct Publication of the 34th Annual ACM Symposium on User Interface Software and Technology. 109–111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Amin Javid. 2021. Carbon Footprint of the ICT equipment and Internet use at the University of Oulu Research report. https://www.oulu.fi/sites/default/files/108/CF_ICT_Internet.pdfGoogle ScholarGoogle Scholar
  21. Yoshihiro Kawahara, Steve Hodges, Benjamin S Cook, Cheng Zhang, and Gregory D Abowd. 2013. Instant inkjet circuits: lab-based inkjet printing to support rapid prototyping of UbiComp devices. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing. 363–372.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Bran Knowles, Lynne Blair, Mike Hazas, and Stuart Walker. 2013. Exploring sustainability research in computing: where we are and where we go next. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing(UbiComp ’13). Association for Computing Machinery, Zurich, Switzerland, 305–314. https://doi.org/10.1145/2493432.2493474Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Eldy S Lazaro Vasquez, Hao-Chuan Wang, and Katia Vega. 2020. Introducing the sustainable prototyping life cycle for digital fabrication to designers. In Proceedings of the 2020 ACM Designing Interactive Systems Conference. 1301–1312.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kuotian Liao, Andrew M. Jimenez, Mallory Parker, Hareesh Iyer, Bichlien Nguyen, Karin Strauss, and Eleftheria Roumeli. 2022. Effects of algal biomass in the structure, mechanical and thermal properties of PLA. In ACS Spring 2022. ACS.Google ScholarGoogle Scholar
  25. Jingping Liu, Cheng Yang, Haoyi Wu, Ziyin Lin, Zhexu Zhang, Ronghe Wang, Baohua Li, Feiyu Kang, Lei Shi, and Ching Ping Wong. 2014. Future paper based printed circuit boards for green electronics: fabrication and life cycle assessment. Energy & Environmental Science 7, 11 (Oct. 2014), 3674–3682. https://doi.org/10.1039/C4EE01995DGoogle ScholarGoogle ScholarCross RefCross Ref
  26. Jens Malmodin and Dag Lundén. 2018. The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015. Sustainability 10, 9 (Sept. 2018), 3027. https://doi.org/10.3390/su10093027Google ScholarGoogle ScholarCross RefCross Ref
  27. Jiva Materials. 2020. The World’s First Fully Recyclable PCB Substrate. https://www.jivamaterials.com/Google ScholarGoogle Scholar
  28. Ryan Oakey. 2017. Paper PCB. https://ryanoakey.com/paper-pcbGoogle ScholarGoogle Scholar
  29. S. O’Dea. 2021. Average lifespan (replacement cycle length) of smartphones in the United States from 2014 to 2025. Technical Report. Daniel Research Group. 49 pages. https://www.statista.com/statistics/619788/average-smartphone-life/Google ScholarGoogle Scholar
  30. O. Osibanjo and I.C. Nnorom. 2007. The challenge of electronic waste (e-waste) management in developing countries. Waste Management & Research 25, 6 (Dec. 2007), 489–501. https://doi.org/10.1177/0734242X07082028Google ScholarGoogle ScholarCross RefCross Ref
  31. Roderik Plavec, Slávka Hlaváčiková, Leona Omaníková, Jozef Feranc, Zuzana Vanovčanová, Katarína Tomanová, Ján Bočkaj, Ján Kruželák, Elena Medlenová, Ivana Gálisová, 2020. Recycling possibilities of bioplastics based on PLA/PHB blends. Polymer Testing 92(2020), 106880.Google ScholarGoogle ScholarCross RefCross Ref
  32. 3D PrintLife. 2022. 3D Printlife Pro PLA, 1KG Of Premium Impact Modified PLA 3D Printer Filament. https://www.3dprintlife.com/pro-plaGoogle ScholarGoogle Scholar
  33. Jie Qi and Leah Buechley. 2014. Sketching in circuits: designing and building electronics on paper. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’14). Association for Computing Machinery, Toronto, Ontario, Canada, 1713–1722. https://doi.org/10.1145/2556288.2557391Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Jie Qi, Leah Buechley, Andrew ”bunnie” Huang, Patricia Ng, Sean Cross, and Joseph A. Paradiso. 2018. Chibitronics in the Wild: Engaging New Communities in Creating Technology with Paper Electronics. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, Montreal QC Canada, 1–11. https://doi.org/10.1145/3173574.3173826Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Adam C. Siegel, Scott T. Phillips, Michael D. Dickey, Nanshu Lu, Zhigang Suo, and George M. Whitesides. 2010. Foldable Printed Circuit Boards on Paper Substrates. Advanced Functional Materials 20, 1 (2010), 28–35. https://doi.org/10.1002/adfm.200901363Google ScholarGoogle ScholarCross RefCross Ref
  36. Katherine W Song and Eric Paulos. 2021. Unmaking: Enabling and Celebrating the Creative Material of Failure, Destruction, Decay, and Deformation. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. 1–12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Paul Teehan and Milind Kandlikar. 2013. Comparing Embodied Greenhouse Gas Emissions of Modern Computing and Electronics Products. Environmental Science & Technology 47, 9 (May 2013), 3997–4003. https://doi.org/10.1021/es303012rGoogle ScholarGoogle ScholarCross RefCross Ref
  38. Aniruddh Vashisth, Tyler J. Auvil, Daniel Sophiea, Sarah E. Mastroianni, and Micah J. Green. 2021. Using Radio-Frequency Fields for Local Heating and Curing of Adhesive for Bonding Metals. Advanced Engineering Materials 23, 9 (2021), 2100210. https://doi.org/10.1002/adem.202100210Google ScholarGoogle ScholarCross RefCross Ref
  39. Eldy S. Lazaro Vasquez and Katia Vega. 2019. From plastic to biomaterials: prototyping DIY electronics with mycelium. In Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers(UbiComp/ISWC ’19 Adjunct). Association for Computing Machinery, London, United Kingdom, 308–311. https://doi.org/10.1145/3341162.3343808Google ScholarGoogle Scholar
  40. Eldy S Lazaro Vasquez and Katia Vega. 2019. Myco-accessories: sustainable wearables with biodegradable materials. In Proceedings of the 23rd International Symposium on Wearable Computers. 306–311.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Lan Yin, Huanyu Cheng, Shimin Mao, Richard Haasch, Yuhao Liu, Xu Xie, Suk-Won Hwang, Harshvardhan Jain, Seung-Kyun Kang, Yewang Su, Rui Li, Yonggang Huang, and John A. Rogers. 2014. Dissolvable Metals for Transient Electronics. Advanced Functional Materials 24, 5 (2014), 645–658. https://doi.org/10.1002/adfm.201301847Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Tale of Two Mice: Sustainable Electronics Design and Prototyping
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format