skip to main content
10.1145/3491102.3501849acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Vibration-Augmented Buttons: Information Transmission Capacity and Application to Interaction Design

Authors Info & Claims
Published:29 April 2022Publication History

ABSTRACT

One can embed a vibration actuator to a physical button and augment the physical button’s original kinesthetic response with a programmable vibration generated by the actuator. Such vibration-augmented buttons inherit the advantages of both physical and virtual buttons. This paper reports the information transmission capacity of vibration-augmented buttons. It was obtained by conducting a series of absolute identification experiments while increasing the number of augmented buttons. The information transmission capacity found was 2.6 bits, and vibration-augmented and physical buttons showed similar abilities in rendering easily recognizable haptic responses. In addition, we showcase a VR text entry application that utilizes vibration-augmented buttons. Our method provides several error messages to the user during text entry using a VR controller that includes an augmented button. We validate that the variable haptic feedback improves task performance, cognitive workload, and user experience for a transcription task.

Skip Supplemental Material Section

Supplemental Material

3491102.3501849-video-figure.mp4

mp4

71.8 MB

3491102.3501849-video-preview.mp4

mp4

16.9 MB

3491102.3501849-talk-video.mp4

mp4

95.9 MB

References

  1. Jason Alexander, John Hardy, and Stephen Wattam. 2014. Characterising the Physicality of Everyday Buttons. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (ITS). ACM, 205–208. https://doi.org/10.1145/2669485.2669519Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Android. 2021. Android Haptics. https://material.io/design/platform-guidance/android-haptics.htmlGoogle ScholarGoogle Scholar
  3. Apple. 2021. Haptics - User Interaction - iOS - Human Interface Guidelines - Apple Developer. https://developer.apple.com/design/human-interface-guidelines/Google ScholarGoogle Scholar
  4. Mojtaba Azadi and Lynette Jones. 2013. Identification of Vibrotactile Patterns: Building Blocks for Tactons. In Proceedings of the IEEE World Haptics Conference (WHC). IEEE, 347–352. https://doi.org/10.1109/WHC.2013.6548433Google ScholarGoogle ScholarCross RefCross Ref
  5. Mojtaba Azadi and Lynette A. Jones. 2014. Evaluating vibrotactile dimensions for the design of tactons. IEEE Transactions on Haptics 7, 1 (2014), 14–23. https://doi.org/10.1109/TOH.2013.2296051Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Stephen Brewster, Faraz Chohan, and Lorna Brown. 2007. Tactile Feedback for Mobile Interactions. In Proceedings of the SIGCHI conference on Human factors in Computing Systems (CHI). ACM, 159–162. https://doi.org/10.1145/1240624.1240649Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Stephen Brewster, Joanna Lumsden, Marek Bell, Malcolm Hall, and Stuart Tasker. 2003. Multimodal ’Eyes-free’ Interaction Techniques for Wearable Devices. In Proceedings of the SIGCHI conference on Human factors in Computing Systems (CHI). ACM, 473–480. https://doi.org/10.1145/642611.642694Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Elyse D Z Chase, Ali Israr, Pornthep Preechayasomboon, Sarah Sykes, Aakar Gupta, and Jessica Hartcher-o Brien. 2021. Learning Vibes : Communication Bandwidth of a Single Wrist-Worn Vibrotactile Actuator. In Proceedings of the IEEE World Haptics Conference (WHC). IEEE, 421–426.Google ScholarGoogle ScholarCross RefCross Ref
  9. Hsiang Yu Chen, Jaeyoung Park, Hong Z. Tan, and Steve Dai. 2011. Design and Evaluation of Identifiable Key-Click Signals for Mobile Devices. IEEE Transactions on Haptics 4, 4 (2011), 229–241. https://doi.org/10.1109/TOH.2011.21Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hsiang Yu Chen, Joseph Santos, Matthew Graves, Kwangtaek Kim, and Hong Z. Tan. 2008. Tactor Localization at the Wrist. In Proceedings of EuroHaptics, Vol. 5024 LNCS. Springer, 209–218. https://doi.org/10.1007/978-3-540-69057-3_25Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. CHERRY Corperation. 2020. MX Series Keyswitches.Google ScholarGoogle Scholar
  12. Mario Enriquez and Karon MacLean. 2008. The Role of Choice in Longitudinal Recall of Meaningful Tactile Signals. In Proceedings of IEEE Haptics Symposium (HAPTICS). IEEE, 49–56. https://doi.org/10.1109/HAPTICS.2008.4479913Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Masaaki Fukumoto and Toshiaki Sugimura. 2001. Active Click: Tactile Feedback for Touch Panels. In Proceedings of the SIGCHI conference on Human factors in Computing Systems (CHI). ACM, 121–122. https://doi.org/10.1145/634067.634141Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Advances in Psychology 52, C (1988), 139–183. https://doi.org/10.1016/S0166-4115(08)62386-9Google ScholarGoogle ScholarCross RefCross Ref
  15. Waseem Hassan, Arsen Abdulali, and Seokhee Jeon. 2020. Authoring New Haptic Textures based on Interpolation of Real Textures in Affective Space. IEEE Transactions on Industrial Electronics 67, 1 (2020), 667–676. https://doi.org/10.1109/TIE.2019.2914572Google ScholarGoogle ScholarCross RefCross Ref
  16. Eve Hoggan, Stephen A Brewster, and Jody Johnston. 2008. Investigating the Effectiveness of Tactile Feedback for Mobile Touchscreens. In Proceedings of the SIGCHI conference on Human factors in Computing Systems (CHI). ACM, 1573–1582. https://doi.org/10.1145/1357054.1357300Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Inwook Hwang, Karon E. MacLean, Matthew Brehmer, Jeff Hendy, Andreas Sotirakopoulos, and Seungmoon Choi. 2011. The Haptic Crayola Effect: Exploring the Role of Naming in Learning Haptic Stimuli. In Proceedings of the IEEE World Haptics Conference (WHC). IEEE, 385–390. https://doi.org/10.1109/WHC.2011.5945517Google ScholarGoogle ScholarCross RefCross Ref
  18. Seokhee Jeon, Hongchae Lee, Jiyoung Jung, and Jin Ryong Kim. 2018. User-adaptive Key Click Vibration on Virtual Keyboard. Mobile Information Systems 2018 (2018), 1–12. https://doi.org/10.1155/2018/6126140Google ScholarGoogle ScholarCross RefCross Ref
  19. Johan Kildal. 2010. 3D-Press: Haptic Illusion of Compliance when Pressing on a Rigid Surface. In Proceedings of International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction, (ICMI-MLMI). ACM, 1–8. https://doi.org/10.1145/1891903.1891931Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Erin Kim and Oliver Schneider. 2020. Defining Haptic Experience: Foundations for Understanding, Communicating, and Evaluating HX. In Proceedings of the SIGCHI conference on Human factors in Computing Systems (CHI). ACM, 1–13. https://doi.org/10.1145/3313831.3376280Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jin Ryong Kim and Hong Z Tan. 2014. A Study of Touch Typing Performance with Keyclick Feedback. In Proceedings of IEEE Haptics Symposium (HAPTICS). IEEE, 227–233. https://doi.org/10.1109/HAPTICS.2014.6775459Google ScholarGoogle ScholarCross RefCross Ref
  22. Sunjun Kim and Geehyuk Lee. 2013. Haptic Feedback Design for a Virtual Button Along Force-Displacement Curves. In Proceedings of Annual ACM Symposium on User Interface Software and Technology (UIST). ACM, 91–96. https://doi.org/10.1145/2501988.2502041Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sunjun Kim, Jeongmin Son, Geehyuk Lee, Hwan Kim, and Woohun Lee. 2013. TapBoard: Making a Touch Screen Keyboard More Touchable. In Proceedings of the SIGCHI conference on Human factors in Computing Systems (CHI). ACM, 553. https://doi.org/10.1145/2470654.2470733Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Taejun Kim, Youngbo Aram Shim, and Geehyuk Lee. 2021. Heterogeneous Stroke: Using Unique Vibration Cues to Improve the Wrist-Worn Spatiotemporal Tactile Display. In Proceedings of the SIGCHI conference on Human factors in Computing Systems (CHI). ACM, 1–12. https://doi.org/10.1145/3411764.3445448Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Chia Hsuan Kung, Tzu Chieh Hsieh, and Shana Smith. 2021. Usability Study of Multiple Vibrotactile Feedback Stimuli in an Entire Virtual Keyboard Input. Applied Ergonomics 90(2021), 103270. https://doi.org/10.1016/j.apergo.2020.103270Google ScholarGoogle ScholarCross RefCross Ref
  26. Jaeyeon Lee, Jaehyun Han, and Geehyuk Lee. 2015. Investigating the Information Transfer Efficiency of a 3x3 Watch-back Tactile Display. In Proceedings of the SIGCHI conference on Human factors in Computing Systems (CHI). ACM, 1229–1232. https://doi.org/10.1145/2702123.2702530Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ju Hwan Lee and Charles Spence. 2008. Assessing the Benefits of Multimodal Feedback on Dual-task Performance under Demanding Conditions. People and Computers XXII Culture, Creativity, Interaction 22 1 (2008), 185–192. https://doi.org/10.14236/ewic/hci2008.18Google ScholarGoogle ScholarCross RefCross Ref
  28. Seungyon ”Claire” Lee and Thad Starner. 2010. BuzzWear: Alert Perception in Wearable Tactile Displays on the Wrist. In Proceedings of the SIGCHI conference on Human factors in Computing Systems (CHI). ACM, 433. https://doi.org/10.1145/1753326.1753392Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Yi-Chi Liao, Sunjun Kim, Byungjoo Lee, and Antti Oulasvirta. 2020. Button Simulation and Design via FDVV Models. In Proceedings of the SIGCHI conference on Human factors in Computing Systems (CHI). ACM, 1–14. https://doi.org/10.1145/3313831.3376262 arxiv:2001.04352Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Quan Liu, Hong Z. Tan, Liang Jiang, and Yulei Zhang. 2018. Perceptual Dimensionality of Manual Key Clicks. In Proceedings of IEEE Haptics Symposium (HAPTICS), Vol. 2018-March. IEEE, 112–118. https://doi.org/10.1109/HAPTICS.2018.8357162Google ScholarGoogle ScholarCross RefCross Ref
  31. I. Scott MacKenzie and R. William Soukoreff. 2003. Phrase Sets for Evaluating Text Entry Techniques. In Proceedings of the SIGCHI conference on Human factors in Computing Systems (CHI). ACM, 754–755. https://doi.org/10.1145/765891.765971Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Anders Markussen, Mikkel R. Jakobsen, and Kasper Hornbæk. 2013. Selection-based Mid-air Text Entry on Large Displays. In IFIP Conference on Human-Computer Interaction. Springer, 401–418. https://doi.org/10.1007/978-3-642-40483-2_28Google ScholarGoogle ScholarCross RefCross Ref
  33. George Miller. 1955. Note on the Bias of Information Estimates. Information theory in psychology: Problems and methods (1955), 95–100.Google ScholarGoogle Scholar
  34. Alan HS Ng, Annie WY and Chan. 2012. Finger Response Times to Visual, Auditory and Tactile Modality Stimuli. In Proceedings of the international multiconference of engineers and computer scientists (IMECS), Vol. 2196. IAENG, 1449–1454.Google ScholarGoogle Scholar
  35. Daichi Ogawa, Taku Hachisu, and Hiroyuki Kajimoto. 2015. Multiple Texture Button by Adding Haptic Vibration to the Physical Button. In SIGGRAPH Asia 2015 Haptic Media And Contents Design,. ACM, 12. https://doi.org/10.1299/jsmermd.2015._2a1-b01_1Google ScholarGoogle ScholarCross RefCross Ref
  36. Chaeyong Park, Jinhyuk Yoon, Seungjae Oh, and Seungmoon Choi. 2020. Augmenting Physical Buttons with Vibrotactile Feedback for Programmable Feels. In Proceedings of Annual ACM Symposium on User Interface Software and Technology (UIST). ACM, 924–937. https://doi.org/10.1145/3379337.3415837Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Gunhyuk Park, Hojun Cha, and Seungmoon Choi. 2019. Haptic Enchanters: Attachable and Detachable Vibrotactile Modules and Their Advantages. IEEE Transactions on Haptics 12, 1 (2019), 43–55. https://doi.org/10.1109/TOH.2018.2859955Google ScholarGoogle ScholarCross RefCross Ref
  38. Gunhyuk Park and Seungmoon Choi. 2018. Tactile Information Transmission by 2D Stationary Phantom Sensations. In Proceedings of the SIGCHI conference on Human factors in Computing Systems (CHI), Vol. 2018-April. ACM, 1–12. https://doi.org/10.1145/3173574.3173832Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Gunhyuk Park, Seungmoon Choi, Kyunghun Hwang, Sunwook Kim, Jaecheon Sa, and Moonchae Joung. 2011. Tactile Effect Design and Evaluation for Virtual Buttons on a Mobile Device Touchscreen. In Proceedings of the International Conference on Human Computer Interaction with Mobile Devices and Services (MobileHCI). ACM, 11. https://doi.org/10.1145/2037373.2037376Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. M.D. Plumbley and S.A. Abdallah. 2007. Information Theory and Sensory Perception. In WIT Transactions on State-of-the-art in Science and Engineering. Vol. 27. WIT Press, 205–233. https://doi.org/10.2495/978-1-85312-853-0/07Google ScholarGoogle ScholarCross RefCross Ref
  41. W. M. Rabinowitz, A. J.M. Houtsma, N. I. Durlach, and L. A. Delhorne. 1987. Multidimensional Tactile Displays: Identification of Vibratory Intensity, Frequency, and Contactor Area. Journal of the Acoustical Society of America 82, 4 (1987), 1243–1252. https://doi.org/10.1121/1.395260Google ScholarGoogle ScholarCross RefCross Ref
  42. Jonghyun Ryu, Chil Woo Lee, and Seungmoon Choi. 2010. Improving Vibrotactile Pattern Identification for Mobile Devices Using Perceptually Transparent Rendering. In Proceedings of the International Conference on Human Computer Interaction with Mobile Devices and Services (MobileHCI). ACM, 257–260. https://doi.org/10.1145/1851600.1851643Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Bushra Sadia, Senem Ezgi Emgin, T Metin Sezgin, and Cagatay Basdogan. 2020. Data-Driven Vibrotactile Rendering of Digital Buttons on Touchscreens. Journal of Human Computer Studies 135, September 2019(2020), 102363. https://doi.org/10.1016/j.ijhcs.2019.09.005Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Hasti Seifi and Karon E. MacLean. 2017. Exploiting Haptic Facets: Users’ Sensemaking Schemas as a Path to Design and Personalization of Experience. International Journal of Human Computer Studies 107, March(2017), 38–61. https://doi.org/10.1016/j.ijhcs.2017.04.003Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Carl E. Sherrick. 1985. A Scale for Rate of Tactual Vibration. Journal of the Acoustical Society of America 78, 1 (1985), 78–83. https://doi.org/10.1121/1.392457Google ScholarGoogle ScholarCross RefCross Ref
  46. Youngbo Aram Shim and Geehyuk Lee. 2018. Demonstrating Gamepad with Programmable Haptic Texture Analog Buttons. In Proceedings of Annual ACM Symposium on User Interface Software and Technology (UIST). ACM, 194–196. https://doi.org/10.1145/3266037.3271648Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Garth Shoemaker, Leah Findlater, Jessica Q. Dawson, and Kellogg S. Booth. 2009. Mid-air Text Input Techniques for Very Large Wall Displays. In Proceedings of Graphics Interface (GI). ACM, 231–238.Google ScholarGoogle Scholar
  48. Marco Speicher, Anna Maria Feit, Pascal Ziegler, and Antonio Krüger. 2018. Selection-based Text Entry in Virtual Reality. In Conference on Human Factors in Computing Systems - Proceedings, Vol. 2018-April. ACM, 1–13. https://doi.org/10.1145/3173574.3174221Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Ian R. Summers, Philip G. Cooper, Paul Wright, Denise A. Gratton, Peter Milnes, and Brian H. Brown. 1997. Information from Time-varying Vibrotactile Stimuli. The Journal of the Acoustical Society of America 102, 6 (1997), 3686–3696. https://doi.org/10.1121/1.420154Google ScholarGoogle ScholarCross RefCross Ref
  50. Hong Z. Tan, Seungmoon Choi, Frances W.Y. Lau, and Freddy Abnousi. 2020. Methodology for Maximizing Information Transmission of Haptic Devices: A Survey. Proc. IEEE 108, 6 (2020), 945–965. https://doi.org/10.1109/JPROC.2020.2992561Google ScholarGoogle ScholarCross RefCross Ref
  51. Hong Z. Tan, Nathaniel I. Durlach, Charlotte M. Reed, and William M. Rabinowitz. 1999. Information Transmission with a Multifinger Tactual Display. Perception & Psychophysics 61, 6 (1999), 993–1008. https://doi.org/10.3758/BF03207608Google ScholarGoogle ScholarCross RefCross Ref
  52. Hong Z. Tan, Charlotte M. Reed, and Nathaniel I. Durlach. 2010. Optimum Information Transfer Rates for Communication Through Haptic and Other Sensory Modalities. IEEE Transactions on Haptics 3, 2 (2010), 98–108. https://doi.org/10.1109/TOH.2009.46Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Kaoru Tashiro, Yuta Shiokawa, Tomotake Aono, and Takashi Maeno. 2009. Realization of Button Click Feeling by Use of Ultrasonic Vibration and Force Feedback. In Proceedings of the IEEE World Haptics Conference (WHC). IEEE, 1–6. https://doi.org/10.1109/WHC.2009.4810877Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. David W. Weir, Michael Peshkin, J. Edward Colgate, Pietro Buttolo, James Rankin, and Matthew Johnston. 2004. The Haptic Profile: Capturing the Feel of Switches. In Proceedings of International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS). IEEE, 186–193. https://doi.org/10.1109/HAPTIC.2004.1287195Google ScholarGoogle ScholarCross RefCross Ref
  55. Jacob O. Wobbrock. 2007. Measures of Text Entry Performance. In Text Entry Systems: Mobility, Accessibility, Universality. Morgan kaufmann. https://doi.org/10.1016/B978-012373591-1/50003-6 47.Google ScholarGoogle ScholarCross RefCross Ref
  56. Bo Yi, Xiang Cao, Morten Fjeld, and Shengdong Zhao. 2012. Exploring User Motivations for Eyes-free Interaction on Mobile Devices. In Proceedings of the SIGCHI conference on Human factors in Computing Systems (CHI). ACM, 2789–2792. https://doi.org/10.1145/2207676.2208678Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Yongjae Yoo, Juliette Regimbal, and Jeremy R Cooperstock. 2021. Identification and Information Transfer of Multidimensional Tactons Presented by a Single Vibrotactile Actuator. In Proceedings of the IEEE World Haptics Conference (WHC). IEEE, 7–12.Google ScholarGoogle ScholarCross RefCross Ref
  58. Qasim Zaidi, Jonathan Victor, Josh McDermott, Maria Geffen, Sliman Bensmaia, and Thomas A Cleland. 2013. Perceptual Spaces: Mathematical Structures to Neural Mechanisms. Journal of Neuroscience 33, 45 (2013), 17597–17602. https://doi.org/10.1523/JNEUROSCI.3343-13.2013Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Vibration-Augmented Buttons: Information Transmission Capacity and Application to Interaction Design

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHI '22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
        April 2022
        10459 pages
        ISBN:9781450391573
        DOI:10.1145/3491102

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 29 April 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate6,199of26,314submissions,24%

        Upcoming Conference

        CHI '24
        CHI Conference on Human Factors in Computing Systems
        May 11 - 16, 2024
        Honolulu , HI , USA

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format