skip to main content
10.1145/3492805.3492812acmotherconferencesArticle/Chapter ViewAbstractPublication PageshpcasiaConference Proceedingsconference-collections
research-article

Massively Parallel Molecular-Continuum Flow Simulation with Error Control and Dynamic Ensemble Handling

Authors Info & Claims
Published:07 January 2022Publication History

ABSTRACT

In coupled molecular-continuum flow simulations, molecular dynamics (MD) simulations exhibit thermal fluctuations. Finding a way to minimize the impact of these fluctuations on the CFD solver, e.g. in terms of stability, and to control the corresponding statistical error plays a key role in order to obtain reliable results.

In this paper, statistical error analysis is employed for MD simulations to determine the statistical error in flow velocities and the number of MD data samples to bound this error. The corresponding error estimator is augmented by a dynamic ensemble handling approach, which allows to couple a variable number of MD simulation instances to a single CFD solver. The ensemble members can be simulated independently from each other over separate coupling time intervals, enabling a high level of (MPI-based) parallelism. Adding or removing MD simulations to/from the ensemble allows to regulate the error and keep it under a prescribed threshold. All functionality is implemented in the massively parallel macro-micro-coupling tool (MaMiCo). We validate our approach by coupled molecular-continuum Couette flow simulation for liquid argon and provide scalability tests on up to 131.072 cores. The computational overhead for handling the dynamic MD ensemble is found to be rather negligible.

References

  1. Burkhard Dünweg, Ulf D. Schiller, and Anthony J. C. Ladd. 2007. Statistical Mechanics of the Fluctuating Lattice Boltzmann Equation. Phys. Rev. E 76, 036704 (2007).Google ScholarGoogle Scholar
  2. Alexandre Dupuis, Evangelos Kotsalis, and Petros Koumoutsakos. 2007. Coupling lattice Boltzmann and molecular dynamics models for dense fluids. Phys. Rev. E 75, 04704 (2007), 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  3. Dmitry Fedosov and George Karniadakis. 2009. Triple-decker: Interfacing atomistic-mesoscopic-continuum flow regimes. J. Comput. Phys. 228(2009), 1157–1171.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Nicolas G. Hadjiconstantinou, Alejandro L. Garcia, Martin Z. Bazant, and Gang He. 2003. Statistical error in particle simulations of hydrodynamic phenomena. J. Comput. Phys. 187(2003), 274–297.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Sarwar Hussain and Amir Haji-Akbaria. 2020. Studying rare events using forward-flux sampling: Recent breakthroughs and future outlook. J. Chem. Phys. 152(2020), 060901.Google ScholarGoogle ScholarCross RefCross Ref
  6. Marco Kalweit and Dimitris Drikakis. 2008. Multiscale Methods for Micro/Nano Flows and Materials. J. Comput. Theor. Nanosci. 5, 9 (2008), 1923–1938.Google ScholarGoogle ScholarCross RefCross Ref
  7. Andreas Köster, Tao Jiang, Gábor Rutkai, Colin Glass, and Jadran Vrabec. 2016. Automatized determination of fundamental equations of state based on molecular simulations in the cloud. Fluid Phase Equilibria 425 (2016), 84–92.Google ScholarGoogle ScholarCross RefCross Ref
  8. Evangelos M. Kotsalis, Jens H. Walther, and Petros Koumoutsakos. 2007. Control of density fluctuations in atomistic-continuum simulations of dense liquids. Phys. Rev. E 76(2007), 016709.Google ScholarGoogle ScholarCross RefCross Ref
  9. Lev D. Landau and Evgeny M. Lifshitz. 1959. Fluid mechanics. Addison-Wesley, Reading.Google ScholarGoogle Scholar
  10. Stephan M. Longshaw, Matthew K. Borg, Srinivasa B. Ramisetti, J. Zhang, Duncan A. Lockerby, David R. Emerson, and Jason M. Reese. 2018. mdFoam+: Advanced molecular dynamics in OpenFOAM. Computer Physics Communications 224 (2018), 1–21.Google ScholarGoogle ScholarCross RefCross Ref
  11. Karsten Meier. 2002. Computer Simulation and Interpretation of the Transport Coefficients of the Lennard-Jones Model Fluid. Ph.D. Dissertation. Helmut-Schmidt-University Hamburg, Shaker.Google ScholarGoogle Scholar
  12. Khaled M. Mohamed and Abdulmajeed Mohamad. 2010. A review of the development of hybrid atomistic–continuummethods for dense fluids. Microfluid. Nanofluid. 8(2010), 283–302.Google ScholarGoogle ScholarCross RefCross Ref
  13. Philipp Neumann and Xin Bian. 2017. MaMiCo: Transient Multi-Instance Molecular-Continuum Flow Simulation on Supercomputers. Comput. Phys. Commun. 220 (2017), 390–402.Google ScholarGoogle ScholarCross RefCross Ref
  14. Philipp Neumann, Hanno Flohr, Rahul Arora, Piet Jarmatz, Nikola Tchipev, and Hans-Joachim Bungartz. 2016. MaMiCo: Software design for parallel molecular-continuum flow simulations. Comput. Phys. Commun. 200 (2016), 324–335.Google ScholarGoogle ScholarCross RefCross Ref
  15. Xiaobo Nie, Shiyi Chen, W. E, and Mark Robbins. 2004. A continuum and molecular dynamics hybrid method for micro-and nano-fluid flow. J. Fluid Mech. 500(2004), 55–64.Google ScholarGoogle ScholarCross RefCross Ref
  16. Weiqing Ren. 2007. Analytical and numerical study of coupled atomistic-continuum methods for fluids. J. Comput. Phys. 227, 2 (2007), 1353–1371.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Xiaoguang Ren, Qian Wang, Li-Yang Xu, Wen-Jing Yang, and Xin-Hai Xu. 2017. HACPar: An efficient parallel multiscale framework for hybrid atomistic–continuum simulation at the micro- and nanoscale. Advances in Mechanical Engineering 9 (2017), 1–13. Issue 8.Google ScholarGoogle ScholarCross RefCross Ref
  18. Edward R. Smith, D. Trevelyan, and E. Ramos. 2016. cpl-library. https://doi.org/10.5281/zenodo.46573Google ScholarGoogle ScholarCross RefCross Ref
  19. David Stephenson, James R. Kermode, and Duncan A. Lockerby. 2018. Accelerating multiscale modelling of fluids with on-the-fly Gaussian process regression. Microfluid. Nanofluid. 22 (2018), 139.Google ScholarGoogle ScholarCross RefCross Ref
  20. Thomas Werder, Jens H. Walther, and Petros Koumoutsakos. 2005. Hybrid atomistic-continuum method for the simulation of dense fluid flows. J. Comput. Phys. 205(2005), 373–390.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Massively Parallel Molecular-Continuum Flow Simulation with Error Control and Dynamic Ensemble Handling
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            HPCAsia '22: International Conference on High Performance Computing in Asia-Pacific Region
            January 2022
            145 pages
            ISBN:9781450384988
            DOI:10.1145/3492805

            Copyright © 2022 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 7 January 2022

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Acceptance Rates

            Overall Acceptance Rate69of143submissions,48%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format