skip to main content
10.1145/3494107.3522777acmconferencesArticle/Chapter ViewAbstractPublication Pagesasia-ccsConference Proceedingsconference-collections
research-article

Context-Aware Drone Detection

Published:30 May 2022Publication History

ABSTRACT

Current commercial and research solutions for drones' detection do not make any assumption on the scenario deployment, as well as the unique mobility pattern associated with the drone's trajectory. Indeed, drones' trajectory is different from the one of people moving at the ground level, being independent of roads layout and obstacles on their path: drones fly directly towards their target, minimizing the travel time and the possibility of being detected. Grounding on this intuition, we propose CADD, a solution enabling drone detection via context-related information. CADD leverages a sensing infrastructure to locate and track all the devices in the area to be protected, and it distinguishes the trajectory of a drone as an anomaly with respect to a ground-truth of allowed trajectories---the ones generated by the devices at the ground level, belonging to vehicles and users within them. We evaluated the performance of CADD over a real dataset of moving vehicles (taxi) in both urban and rural scenarios, resulting in an overall accuracy of 0.91 and 0.84, for the rural and the urban scenario, respectively.

References

  1. S. Al-Emadi, A. Al-Ali, A. Mohammad, and A. Al-Ali. 2019. Audio Based Drone Detection and Identification using Deep Learning. In 15th International Wireless Communications Mobile Computing Conference (IWCMC) . 459--464. https://doi.org/10.1109/IWCMC.2019.8766732Google ScholarGoogle Scholar
  2. Aladdin Consortium. 2021. Aladdin -- Advanced hoListic Adverse Drone Detection, Identification & Neutralization . http://aladdin.eu . (Accessed: 2021--10--22.Google ScholarGoogle Scholar
  3. R. Altawy and A. Youssef. 2016. Security, privacy, and safety aspects of civilian drones: A survey . ACM Transactions on Cyber-Physical Systems , Vol. 1, 2 (2016), 1--25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Z. Anwar, Z. Kaleem, and A. Jamalipour. 2019. Machine Learning Inspired Sound-Based Amateur Drone Detection for Public Safety Applications . IEEE Transactions on Vehicular Technology , Vol. 68, 3 (2019), 2526--2534. https://doi.org/10.1109/TVT.2019.2893615Google ScholarGoogle ScholarCross RefCross Ref
  5. B. Alzahrani, et al. 2020. UAV assistance paradigm: State-of-the-art in applications and challenges . Journ. of Netw. and Comput. Applicat. (2020), 102706.Google ScholarGoogle Scholar
  6. BBC. 2019. Gatwick Airport: Drone attack grounds flights . http://www.bbc.co.uk/news/uk-england-sussex-4662375 . (Accessed: 2021--10--22.Google ScholarGoogle Scholar
  7. S. Birnbach, R. Baker, and I. Martinovic. 2017. Wi-fly?: Detecting privacy invasion attacks by consumer drones . (2017).Google ScholarGoogle Scholar
  8. I. Bisio, C. Garibotto, F. Lavagetto, A. Sciarrone, and S. Zappatore. 2019. Blind Detection: Advanced Techniques for WiFi-Based Drone Surveillance . IEEE Transactions on Vehicular Technology , Vol. 68, 1 (2019), 938--946. https://doi.org/10.1109/TVT.2018.2884767Google ScholarGoogle ScholarCross RefCross Ref
  9. P. Boccadoro, D. Striccoli, and L. Grieco. 2021. An extensive survey on the Internet of Drones . Ad Hoc Networks , Vol. 122 (2021), 102600.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. Caceres Najarro, I. Song, and K. Kim. 2021. Fundamental Limitations and State-of-the-art Solutions for Target Node Localization in WSNs . (2021).Google ScholarGoogle Scholar
  11. DeDrone. 2021. Worldwide Drone Incidents . Available Online: hhttps://www.dedrone.com/resources/incidents/all.Google ScholarGoogle Scholar
  12. R. Di Pietro, G. Oligeri, and P. Tedeschi. 2019. JAM-ME: Exploiting Jamming to Accomplish Drone Mission. In 2019 IEEE Conference on Communications and Network Security (CNS). 1--9. https://doi.org/10.1109/CNS.2019.8802717Google ScholarGoogle ScholarCross RefCross Ref
  13. FAA. 2021. UAS Remote Identification Overview . Available Online: https://www.faa.gov/uas/getting_started/remote_id/.Google ScholarGoogle Scholar
  14. A. Koubâa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, and M. Khalgui. 2019. Micro Air Vehicle Link (MAVlink) in a Nutshell: A Survey . IEEE Access , Vol. 7 (2019), 87658--87680.Google ScholarGoogle ScholarCross RefCross Ref
  15. H. Liu, Z. Wei , Y. Chen, J. Pan, L. Lin, and Y. Ren. 2017. Drone Detection Based on an Audio-Assisted Camera Array. In IEEE Third International Conference on Multimedia Big Data (BigMM). 402--406. https://doi.org/10.1109/BigMM.2017.57Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Mozaffari, et al. 2019. A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems . IEEE Communications Surveys & Tutorials , Vol. 21, 3 (2019).Google ScholarGoogle ScholarCross RefCross Ref
  17. L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and L. Damas. 2013. Predicting Taxi--Passenger Demand Using Streaming Data. IEEE Transactions on Intelligent Transportation Systems , Vol. 14, 3 (2013), 1393--1402. https://doi.org/10.1109/TITS.2013.2262376Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. B. Nassi, R. Ben-Netanel, A. Shamir, and Y. Elovici. 2018. Game of drones-detecting streamed POI from encrypted FPV channel . arXiv preprint arXiv:1801.03074 (2018).Google ScholarGoogle Scholar
  19. B. Nassi, R. Ben-Netanel, A. Shamir, and Y. Elovici. 2019. Drones' Cryptanalysis - Smashing Cryptography with a Flicker. In 2019 IEEE Symposium on Security and Privacy (SP). 1397--1414. https://doi.org/10.1109/SP.2019.00051Google ScholarGoogle ScholarCross RefCross Ref
  20. P. Nguyen, H. Truong, M. Ravindranathan, A. Nguyen, R. Han, and T. Vu. 2017. Matthan: Drone Presence Detection by Identifying Physical Signatures in the Drone's RF Communication. In Proc. of the Annual Int. Conf. on Mobile Systems, Applications, and Services (MobiSys '17). 211--224.Google ScholarGoogle Scholar
  21. G. Oligeri, S. Sciancalepore, and R. Di Pietro. 2020. GNSS Spoofing Detection via Opportunistic IRIDIUM Signals (WiSec '20). Association for Computing Machinery, New York, NY, USA, 42--52. https://doi.org/10.1145/3395351.3399350Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. Oligeri, S. Sciancalepore, O. Ibrahim, and R. Di Pietro. 2019. Drive Me Not: GPS Spoofing Detection via Cellular Network: (Architectures, Models, and Experiments) (WiSec '19). Association for Computing Machinery, New York, NY, USA, 12--22. https://doi.org/10.1145/3317549.3319719Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Otto, N. Agatz, J. Campbell, B. Golden, and E. Pesch. 2018. Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey . Networks , Vol. 72, 4 (2018), 411--458.Google ScholarGoogle ScholarCross RefCross Ref
  24. S. Raponi, S. Sciancalepore, G. Oligeri, and R. Di Pietro. 2021. Road Traffic Poisoning of Navigation Apps: Threats and Countermeasures. IEEE Security Privacy (2021), 2--11. https://doi.org/10.1109/MSEC.2021.3110307Google ScholarGoogle Scholar
  25. T. Rappaport. 2001. Wireless Communications: Principles and Practice 2nd ed.). Prentice Hall PTR, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Reuters. 2021. Saudi-led coalition says it intercepts armed drone fired at Abha airport . https://www.reuters.com/world/middle-east/saudi-led-coalition-says-intercepts-armed-drone-fired-abha-airport-2021-05--10/. (Accessed: 2021--10--22.Google ScholarGoogle Scholar
  27. SafeShore Consortium. 2021. SafeShore -- Increasing Border Security . http://safeshore.eu . (Accessed: 2021--10--22.Google ScholarGoogle Scholar
  28. S. Sciancalepore, O. Ibrahim, G. Oligeri, and R. Di Pietro. 2019. Detecting drones status via encrypted traffic analysis. In Proceedings of the ACM Workshop on Wireless Security and Machine Learning. 67--72.Google ScholarGoogle Scholar
  29. S. Sciancalepore, O. Ibrahim, G. Oligeri, and R. Di Pietro. 2020. PiNcH: An effective, efficient, and robust solution to drone detection via network traffic analysis . Computer Networks , Vol. 168 (2020), 107044.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Seybold. 2005. Introduction to RF propagation. John Wiley & Sons.Google ScholarGoogle Scholar
  31. D. Shin, D. Jung , D. Kim, J. Ham, and S. Park. 2017. A Distributed FMCW Radar System Based on Fiber-Optic Links for Small Drone Detection . IEEE Transactions on Instrumentation and Measurement , Vol. 66, 2 (2017), 340--347. https://doi.org/10.1109/TIM.2016.2626038Google ScholarGoogle ScholarCross RefCross Ref
  32. A. Shoufan, H. M. Al-Angari, M. F. A. Sheikh, and E. Damiani. 2018. Drone Pilot Identification by Classifying Radio-Control Signals . IEEE Transactions on Information Forensics and Security , Vol. 13, 10 (Oct 2018), 2439--2447.Google ScholarGoogle ScholarCross RefCross Ref
  33. Statista. 2021. Estimated size of the global commercial drone market in 2021 with a forecast for 2026 . https://www.statista.com/statistics/878018/global-commercial-drone-market-size/. Accessed: 2021--10--22.Google ScholarGoogle Scholar
  34. H. Sun, B. Oh , X. Guo, and Z. Lin. 2019. Improving the Doppler Resolution of Ground-Based Surveillance Radar for Drone Detection . IEEE Trans. Aerospace Electron. Systems , Vol. 55, 6 (2019), 3667--3673. https://doi.org/10.1109/TAES.2019.2895585Google ScholarGoogle ScholarCross RefCross Ref
  35. P. Tedeschi, G. Oligeri, and R. Di Pietro. 2020. Leveraging Jamming to Help Drones Complete Their Mission. IEEE Access , Vol. 8 (2020), 5049--5064. https://doi.org/10.1109/ACCESS.2019.2963105Google ScholarGoogle ScholarCross RefCross Ref
  36. P. Tedeschi, S. Sciancalepore, and R. Di Pietro. 2021. ARID: Anonymous Remote IDentification of Unmanned Aerial Vehicles. In Annual Computer Security Applications Conference. 207--218.Google ScholarGoogle Scholar
  37. T. Wall. 2016. Ordinary emergency: Drones, police, and geographies of legal terror . Antipode , Vol. 48, 4 (2016), 1122--1139.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Context-Aware Drone Detection

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          CPSS '22: Proceedings of the 8th ACM on Cyber-Physical System Security Workshop
          May 2022
          101 pages
          ISBN:9781450391764
          DOI:10.1145/3494107
          • Program Chairs:
          • Alvaro A. Cardenas,
          • Daisuke Mashima

          Copyright © 2022 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 30 May 2022

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate33of113submissions,29%
        • Article Metrics

          • Downloads (Last 12 months)14
          • Downloads (Last 6 weeks)2

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader