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We consider the task of temporal human action localization in lifestyle vlogs. We introduce a novel dataset
consisting of manual annotations of temporal localization for 13,000 narrated actions in 1,200 video clips.
We present an extensive analysis of this data, which allows us to better understand how the language and
visual modalities interact throughout the videos. We propose a simple yet effective method to localize the
narrated actions based on their expected duration. Through several experiments and analyses, we show that
our method brings complementary information with respect to previous methods, and leads to improvements
over previous work for the task of temporal action localization.
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1 INTRODUCTION

Targetting the long-term goal of video understanding, recent years have witnessed significant
progress in the task of action localization, starting with the localization of one action at a time in a
short clip [58] or in a longer untrimmed video [32], all the way to localizing more complex natural
language queries in videos [4, 14-16, 22], and recently to localizing complex natural language
queries extracted directly from transcripts in online videos [35, 54, 64].

Lifestyle vlogs represent a great challenge and opportunity for this task, as they depict everyday
actions in a complex setting. Unlike traditional action datasets [1, 4, 6, 50] or instructional video
datasets [36, 54, 64], vlogs contain a wide variety of actions that are more akin to real-life settings,
such as “grab my Kindle,” “do some reading,” or “chill out”

Moreover, vlogs typically include transcripts with complex natural language expressions, which
allow us to find an alternative to the costly process of manual annotations. Given the prevalence of
vlogs in online platforms, automatically extracting action names from their transcripts can lead to
a large-scale inexpensive action dataset. Previous work [36] relied on this technique to build very
large datasets of video-action mappings. However, previous work also found that the video and
transcript are often misaligned [24, 35]: in the best case, there is a gap of a few seconds between
the time when a person verbally expresses the action and when it is visually illustrated.
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Fig. 1. Overview of the dataset [24]: distinguishing between actions that are narrated by the vlogger but not
visible in the video and actions that are both narrated and visible in the video (underlined), with a highlight
on visible actions that represent the same activity (same color). The arrows represent the temporal alignment
between when the visible action is narrated as well as the time it occurs in the video. Best viewed in color.

This paper addresses the task of temporal action localization in vlogs, and makes three main
contributions. First, we introduce a dataset of manual annotations of temporal localization of
actions that addresses new challenges compared to other action localization datasets. Second, we
present 2SEAL — a simple yet effective method that leverages both language and vision to temporally
localize actions, while also accounting for the expected duration of the actions. Through extensive
evaluations, we show that our proposed method can be used along with existing models to improve
their performance on temporal action localization. Finally, we conduct an analysis of the results,
and gain insight into the role played by the different components, which further suggests avenues
for future work.

2 RELATED WORK

Learning connections between vision and language is crucial to many applications. These applica-
tions include visual question answering [3, 30, 60], visual content retrieval based on textual queries
[25, 36, 38], image and video captioning [3, 10, 61], video summarization with natural language
[41, 43], action detection [7, 17, 32], action temporal localization in videos [11, 14-16, 45] and
mapping text descriptions to image or video content [28, 29, 45, 47, 59].

Action Localization Datasets. Action detection and localization algorithms evolve with the build-
ing of complex datasets. From searching YouTube videos, given a set of predefined actions [1, 7, 21],
or filming in people’s homes who act based on a scenario [50], these datasets capture the complexity
of daily life activities. However, because of the high annotation cost, these methods are not scalable.
Currently, the latest trend in the vision community is to search for pre-defined tasks on WikiHow
and collect their corresponding videos from YouTube [36, 54, 64]. This process is more efficient and
guarantees that more relevant actions are shown in the videos. Another technique for collecting
human actions is to perform implicit data gathering [13]: instead of explicitly searching for a
pre-defined task, find routine videos that contain a broad range of daily actions.

In our work, we use the data introduced in [24] which identifies if the actions mentioned in the
transcripts are present (visible) in the video. Although we use implicit data gathering as proposed in
the past, unlike Fouhey et al. [13], who focus on the visual information (hand and object locations),
we focus on routine videos that contain rich audio descriptions of the actions being performed, and
we use this transcribed audio to extract actions.

Action Localization Methods. Methods that reason over text and visual information do this by
first extracting the textual embeddings [9, 31, 42] and visual features [7, 56] and then linearly
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mapping them to the same embedding space [4, 5, 14, 15]. This is usually computed using self
and cross attention over the textual and visual features. The visual features can be extracted
with a convolutional neural net as in [5, 33, 62] or from object bounding boxes [29]. Recent work
[34, 52, 53] builds on this approach by combining the attention modules in a large scale Transformer
architecture [57]. Their goal is to learn inter-modality and cross-modality relationships that can
be used in downstream tasks that require complex reasoning about natural language grounded in
visual data [18, 23, 51].

Instructional vs. Routine Videos. Action localization methods are moving from using simple pre-
defined action labels [7, 17] to more complex natural language action descriptions [5, 36, 48]. Our
goal is also to localize natural language descriptions of actions in videos. An important difference
between our task and previous work is that the natural language descriptions come from the people
filming the actions.

Research work such as [2, 36] also take advantage directly of the actions extracted from the
transcripts, however their videos are instructional videos. Instead of looking at instructional videos,
we choose a broader category: routine videos, which can contain instructions, but are more focused
on describing the typical day of a person.

Compared to instructional videos, routine videos contain a more diverse set of activities, from
waking up in the morning and taking a shower, to working out and making a meal. This diversity
of actions in one video translates to many more diverse filming perspectives in the same video,
which presents a novel challenge for action localization models. Another difference is that routine
videos contain higher-level actions that can be abstract in nature (e.g., “wind down,” “go for a walk”)
and thus harder to ground than clear instructions. This is an important difference, as it presents
a challenge that is essential for webly supervised systems, which are expected to learn from a
diverse mix of both concrete actions and high-level abstract actions. In the realm of web videos,
instructional videos account for only a small fraction.

Finally, note that existing action localization methods by and large rely on simplifying assump-
tions (e.g., instructional videos, always visible actions, non-overlapping actions). In contrast, our
paper introduces an evaluation that accounts for the additional challenges encountered in online
videos.

3 DATA COLLECTION AND ANNOTATION

We collect a dataset of routine and do-it-yourself (DIY) videos from YouTube, consisting of people
performing daily activities, such as making breakfast or cleaning the house. These videos also
typically include a detailed verbal description of the actions being depicted. We choose to focus on
these lifestyle vlogs because they are very popular, with tens of millions having been uploaded on
YouTube; Table 1 shows the approximate number of videos available for several routine queries.
Vlogs also capture a wide range of everyday activities; on average, we find thirty different visible
human actions in five minutes of video.

By collecting routine videos, instead of searching explicitly for actions, we do implicit data
gathering, a form of data collection introduced by Fouhey et al [13]. Because everyday actions are
common and not unusual, searching for them directly does not return many results. In contrast, by
collecting routine videos, we find many everyday activities present in these videos.

3.1 Data Gathering

We build a data gathering pipeline (see Figure 2) to automatically extract and filter videos and their
transcripts from YouTube. The input to the pipeline is manually selected YouTube channels. Ten
channels are chosen for their rich routine videos, where the actor(s) describe their actions in great
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Query Results Videos 171

my morning routine 28M+ Video hours 20

my after school routine  13M+ Transcript words 302,316

my workout routine 23M+ Clips 1,246

my cleaning routine 13M+ Actions 13,380

DIY 78M+ Visible actions 3,131
Table 1. Approximate number of videos found when Non-visible actions 10,249
searching for routine and do-it-yourself queries on Table 2. Data statistics
YouTube. ’

1. Transcript Filtering

Healthy Bedtime Habits (My Routine
= +DIY)

2. Extract Candidate Actions from Transcript

Try it out 3:39
Adding all the herbs in a mason jar 3:41
Adding hot water 3:43
Put some cheesecloth over the top next | | 4:03

3. Segment Videos into Clips

LN
»

4. Motion Filtering

Fig. 2. Overview of the data gathering pipeline.

detail. From each channel, we manually select two different playlists, and from each playlist, we
randomly download ten videos. The following data processing steps are applied:

Transcript Filtering. Transcripts are automatically generated by YouTube. We filter out videos
that do not contain any transcripts or that contain transcripts with an average (over the entire
video) of less than 0.5 words per second.

These videos do not contain detailed action descriptions so we cannot effectively leverage textual
information.

Extract Candidate Actions from Transcript. Starting with the transcript, we generate a noisy
list of potential actions. This is done using the Stanford parser [8] to split the transcript into
sentences and identify verb phrases, augmented by a set of hand-crafted rules to eliminate some
parsing errors. The resulting actions are noisy, containing phrases such as “found it helpful if you”
and “created before up the top you.”

Segment Videos into Clips. The length of our collected videos varies from two minutes to twenty
minutes. To ease the annotation process, we split each video into clips (short video sequences
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= 03:24 you're gonna ACHon ‘ Visible?
] ‘ 03:27 and it you're gonna bake it for v

03:30 about six hours it’s definitely a bake it for v

i ,”"i 03:32 long time so keep in mind that it’s take it out v
03:34 basically just dehydrating it pull it right off v
03:50 after what seems like an eternity in = th? baking sheet
03:53 the oven you're going to take it out put it on to some v
03:55 it’s actually dehydrated at that point parchment paper
03:57 which is fabulous because you can so keep in mind that
03:59 pull it right off the baking sheet and seems like an eternity X
04:01 you’re going to put it on to some in the oven
04:03 parchment paper and then you're dehydrated at that X
. point which .

Fig. 3. Sample video frames, transcript, and annotations.

of maximum one minute). Clips are split to minimize the chance that the same action is shown
across multiple clips. This is done automatically, based on the transcript timestamp of each action.
Because YouTube transcripts have timing information, we are able to line up each action with
its corresponding frames in the video. We sometimes notice a gap of several seconds between
the time an action occurs in the transcript and the time it is shown in the video. To address this
misalignment, we first map the actions to the clips using the time information from the transcript.
We then expand the clip by 15 seconds before the first action and 15 seconds after the last action.
This increases the chance that all actions will be captured in the clip.

Motion Filtering. We remove clips that do not contain significant movement. We sample one out
of every one hundred frames of the clip, and compute the 2D correlation coefficient between these
sampled frames. If the median of the obtained values is greater than a certain threshold (we choose
0.8), we filter out the clip.

Videos with low movement tend to show people sitting in front of the camera, describing their
routine, but not acting out what they are saying. There can be many actions in the transcript, but if
they are not depicted in the video, we cannot leverage the video information.

3.2 Visual Action Annotation

We start by identifying which of the actions extracted from the transcripts are visually depicted in
the videos. We create an annotation task on Amazon Mechanical Turk (AMT) to identify actions
that are visible. We give each AMT turker a HIT consisting of five clips with up to seven actions
generated from each clip. The turker is asked to assign a label (visible in the video; not visible in the
video; not an action) to each action. Figure 4 shows the AMT interface used. Because it is difficult to
reliably separate not visible and not an action, we group these labels together. Each clip is annotated
by three different turkers. For the final annotation, we use the label assigned by the majority of
turkers, i.e., visible or not visible / not an action.

To help detect spam, we identify and reject the turkers that assign the same label for every action
in all five clips that they annotate. Additionally, each HIT contains a ground truth clip that has
been pre-labeled by two reliable annotators. Each ground truth clip has more than four actions
with labels that were agreed upon by both reliable annotators. We compute accuracy between a
turker’s answers and the ground truth annotations; if this accuracy is less than 20%, we reject the
HIT as spam.

After spam removal, we compute the agreement score between the turkers using Fleiss kappa
[12]. Over the entire data set, the Fleiss agreement score is 0.35, indicating fair agreement. On
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Is the action visible in the video?

seems like an eternity inthe oven 5 Yes @ No o Not an action
take the tray out @ Yes o No o Notan action

dehydrated at that point which O Yes @ No ¢ Not an action
pull it right off the baking sheet @ Yes 0 No o Not anaction

Fig. 4. Annotation tool used by Amazon Mechanical Turk workers to annotate if an action is visible or not in
the video.
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Fig. 5. An example of low agreement. The table shows actions and annotations from workers #1, #2, and #3,
as well as the ground truth (GT). Labels are: visible - v/, not visible - x. The bottom row shows screenshots
from the video. The Fleiss kappa agreement score is -0.2.
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Actions: Actions Timestamp(sec.)

“clean up” “clean up” [1.4,19.0]
“add their toys” m  “add their toys” [31.0, 40.0]
“add a little bit of “add a little bit of [47.0, 55.0]
bubble bath” bubble bath”

“make sure the water” “make sure the water” not visible

Fig. 6. Action temporal localization annotation. Each action is localized in the video according to its start and
end time offsets. The action is localized according to its visibility in the video, and if it cannot be seen, it is
marked as not visible.

the ground truth data, the Fleiss kappa score is 0.46, indicating moderate agreement. This fair to
moderate agreement indicates that the task is difficult, and there are cases where the visibility of
the actions is hard to label. To illustrate, Figure 5 shows examples where the annotators had low
agreement. Table 2 shows statistics for our final dataset of videos labeled with actions, and Figure 3
shows a sample video and transcript, with annotations.

Note that the goal of our dataset is to capture naturally-occurring, routine actions. Because the
same action can be identified in different ways (e.g., “pop into the freezer”, “stick into the freezer"),
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Dataset #Actions #Verbs #Actors Implicit Label types
Ours 4340 580 10 v v
VLOG [13] - - 10.7k v v
Kinetics [26] 600 270 - X X
ActivityNet [6] 203 - - X X
MIT [39] 339 339 - X X
AVA [20] 80 80 192 v X
Charades [50] 157 30 267 X X
MPII Cooking [46] 78 78 12 v X

Table 3. Comparison between our dataset and other video human action recognition datasets. # Actions
show either the number of action classes in that dataset (for the other datasets), or the number of unique
visible actions in that dataset (ours); # Verbs shows the number of unique verbs in the actions; Implicit is the
type of data gathering method (versus explicit); Label types are either post-defined (first gathering data and
then annotating actions): v/, or pre-defined (annotating actions before gathering data): x.

our dataset has a complex and diverse set of action labels. These labels demonstrate the language
used by humans in everyday scenarios; because of that, we choose not to group our labels into a
pre-defined set of actions. Table 3 shows the number of unique verbs, which can be considered a
lower bound for the number of unique actions in our dataset. On average, a single verb is used in
seven action labels, demonstrating the richness of our dataset.

The action labels extracted from the transcript are highly dependent on the performance of the
constituency parser. This can introduce noise or ill-defined action labels. Some actions contain
extra words (e.g., “brush my teeth of course”), or lack words (e.g., “let me just”). Some of this noise
is handled during the annotation process; for example, most actions that lack words are labeled as
“not visible” or “not an action” because they are hard to interpret.

3.3 Temporal Action Annotation

Each video is associated with a set of human actions, in the form of verb phrases extracted from the
automatically generated video transcripts. The actions are labeled into two categories: visible or
not visible, depending on whether the actions are explicitly represented in the video. For example,
in the video sequence shown in Figure 1, the action “drink coffee” is not visible in the videos; it is
only mentioned as a reason for performing the visible action of “use a melatonin spray” Other not
visible actions from Figure 1 are: “help,” “hope,” “enjoyed this video,” “thumbs it up” and “subscribe,”
which relate to video feedback but are not visually shown.

Two of the authors of this paper annotated the start and end time of all the visible actions in
the dataset, as illustrated in Figure 6. Each action is localized according to its start and end time
offsets. The timestamp is marked according to when the action is visible, which does not necessarily
correspond to when it is talked about. If the annotators were not able to localize the action in the
clips, they marked it as not visible, which corresponds to a correction of the original dataset [24].
They performed the annotations using a simple annotation tool that we built for this purpose,
which is publicly available at https://github.com/Oanalgnat/video_annotations.

We measure the inter-annotator agreement by computing the Krippendorft’s Alpha score [27]
using the interval difference function for each video. We obtain scores between 0.78 and 0.90, which
indicate a high agreement.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2021.


https://github.com/OanaIgnat/video_annotations

1:8 Ignat, et al.

#actions  Vis. (%)  #videos  #clips

Train 4,939 35.1 110 680
Val 1,264 35.9 26 187
Test 3,456 25.7 35 275

Table 4. Statistics for the experimental data split. “Vis.” is the percentage of visible actions among the narrated
actions.

Long actions #actions
Duration (s) #actions use (a whisk) 37
0-5 1,136 make (oatmeal) 81
5-15 1,200 clean (my skin) 60
15-25 475 o - -
25-35 157 ort actions #actions
35-45 72 add (spice) 362
45-60 99 use (the clamps) 228
(a) put (a lid on top) 179
(b)

Dataset Long actions (%)

Charades-STA [14] 4.2

CrossTask [64] 16.4

COIN [54] 31.6

Ours 25.5

(©

Table 5. Action duration analysis: (a) Distribution in our dataset; (b) Example of long and short actions, each
with a sample object, grouped by verbs and sorted by verb frequency; (c) Percentage of long (>15s) actions in
other datasets.

For our experiments, we split the data by vlog channel. Out of ten channels, six channels are
used for training, two channels for validation, and two for testing. Statistics for this experimental
split are shown in Table 4.

3.4 Data Analysis
We perform two types of analyses to gain a better understanding of our dataset.

Action Duration.

First, we measure the distribution of action durations in our dataset. As shown later, this informa-
tion is important, as the action durations can have an impact on the performance of different models.
Table 5a shows the action duration distribution in the dataset. A summary of long actions found
in other datasets is shown in Table 5c¢ (we define an action as long if it exceeds fifteen seconds).
Table 5b shows examples of long actions, grouped by verb and sorted by frequency.

Temporal Relations between Actions.
Second, we analyze the temporal relations between actions mentioned in the transcripts. These
actions can be challenging to model as they capture the complexities of real life. While there are
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Actions that follow each other Actions that overlap
“make super quick chicken tacos” ; “do the dishes" “toss everything together” N “chop it up”
“put them in a bowl” ; “cover in water” “add fresh herbs” N “add chickpeas to a bowl”
“give a little mix” ; “add half cup of berries” “scoop out of the processor” N “scoop it into a bowl”
“get a little water on your skin” ; “rinse it off” ‘combine our dry ingredients” N “give it a mix”
Actions that are included in each other Actions that occur exactly at the same time
“use a plastic scraper” C “wipe thoroughly” “write out” = “make your bucket list”
“throw the cushions around” C “fix my cushions up” “go to bed” = “head to bed”
“do this scrub vigorously” C “clean some ovens” “add good protein” = “use one tablespoon of cashew nut butter”
“do some yoga” C “wind down” “grab my Kindle” = “do some reading”

Table 6. Examples of different types of action temporal relations: actions that overlap (N), actions that are
included in each other (C), actions that occur exactly at the same time (=). From a total of 2,070 number of
overlapping actions, 1,573 are included in each other and 269 occur exactly at the same time.

several actions that follow each other (as more naturally expected), there are also actions that
overlap, are included in one another, or even happen at the same time. From a total of 2,070 number
of overlapping actions, 1,573 are included in each other and 269 occur exactly at the same time.
Table 6 shows examples of such actions. While several action localization datasets have been
proposed in the past [54], to the best of our knowledge, this dataset is the only action localization
dataset that contains overlapping actions, making it challenging and novel. For the purpose of this
work, we localize each action independent of other actions, but future work may leverage the
relations that exist between actions.

4 TWO-STAGE ACTION LOCALIZATION

For a given action mentioned in a video transcript, our goal is to: (1) decide if it is visible within
the video clip; and (2) if it is visible, identify its temporal location (i.e., the time interval start and
end times).

To achieve this goal, we propose a two-stage method which we call 2SEaL (2-StagE Action
Localization).

Figure 7 shows the overall architecture of 2SEaL. Following our analysis of the variation in
action duration (see Section 3.4), and empirical observations made on the development dataset,
we hypothesize that shorter actions can be localized mainly based on the temporal information
inferred from the transcript (i.e., when an action was narrated within the transcript), whereas longer
actions are often temporally shifted with respect to their mention in the transcript and thus can
benefit from a multimodal model. We thus devise an architecture that first aims to predict whether
the action is short or long, and correspondingly activates a transcript alignment (for short actions)
or a multimodal model (for long actions). We describe below each of these main components.

Action Duration Classification We use the annotated temporal locations in the videos to deter-
mine the expected duration of each action, and build a binary classifier to discriminate between
short (<15s) and long (>15s) actions. We choose this threshold based on the validation data. The
classifier uses as input an action text embedding obtained from a text encoder, as described in
Section 5.
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Fig. 7. 2SEAL method architecture. Note the depicted MP U-based multimodal model can be replaced with any
multimodal model. The MPU model is composed of vector element-wise addition (+’), vector element-wise
multiplication (’x’) and vector concatenation followed by a Fully Connected ('FC’) layer to combine the
information from both textual and visual modalities.

Transcript Actions + Timestamp
00:01:32,939 —> 00:01:34,580 [1:32, 1:34]
“them and then | usually add a little bit of bubble bath” “add a little bit of bubble bath”
00:01:34,590 —> 00:01:37,130 [1:34,1:37]
“l use the hg care “use the seventh generation coconut care
mousse shampoo” mousse shampoo”
00:01:42,149 ~> 00:01:45,170 [1:42, 1:45]
“and then | use baby Ganic spa | put a” “use baby Ganic spa”

Fig. 8. Example of applying the Transcript Alignment method. The transcript contains time intervals for
utterances. Each action contained in an utterance is assigned the corresponding time interval.

Transcript Alignment. Each video contains a transcript automatically generated by the YouTube
API The transcript contains time information for every utterance. Given an action mention extracted
from an utterance, the Transcript Alignment method assumes the action is visible, and predicts its
temporal location to be the time interval associated with the corresponding utterance, as illustrated
in Figure 8. The transcript alignment is also illustrated in Figure 7.

Multimodal Model. We split the video clips into fixed-duration spans and convert the action
temporal localization task into binary classification tasks based on the output from a scorer model
s. We aim to predict if the visual information from a video clip span corresponds to the linguistic
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Method A P R F1

Majority 744 744 100.0 85.3
Action Duration CIf. 80.6 81.8 97.6 89.0

Table 7. Action duration classification results on the validation set. The classification is binary, where the
positives are the short actions (<15s) and the negatives the long ones (>15s). The columns are in order:
accuracy (A), precision (P), recall (R) and F1 score (F1).

representation of an action. For a given action mention within the transcript and a fixed-duration
video clip span, we compute a similarity score to decide if they correspond to each other. The action
mention is represented using a text encoder and the features for the video clip span are obtained
from a video encoder (see Section 5).

The process of pairing action mentions to video clip spans is shown in Figure 7; s can be
represented by any multimodal model, and we describe several models in Section 5.2. At test
time, given a video clip and its corresponding transcript, we input all the pairs of action mentions
and fixed-duration video clip spans. We merge all the spans that surpass a certain threshold and
are separated by less than three seconds into proposals. Each proposal is assigned the maximum
similarity score of its spans. We then perform non-maximum suppression to select the best proposal
as the predicted action location interval. At training time, we focus only on the binary task and
train s with the standard cross-entropy loss. Given that an action mention has many more negative
(not visible) fixed-duration video clip spans in a given video clip, we balance the classes out via
downsampling by taking negative random samples from the same video clip. The question of how
different negative sampling strategies affect the scorer model performance is left for future work.

5 EXPERIMENTS

To evaluate our duration-informed action localization method, we run several comparative experi-
ments on the dataset described in Section 3. We compare our method with several strong baselines,
and also perform feature ablation and a breakdown of results by action duration.

In all our experiments, we use a video encoder consisting of the last layer (mixed_5c) from a
Kinetics [7] pre-trained I3D model. The video clips are divided into overlapping three-second spans
with a stride of 1s. We freeze both the text and the video encoders and take their outputs as features.
For the Action Duration Classification, we use an SVM classifier with C=1.0 and an RBF kernel,
and weight the samples inversely proportional to their class frequency. We train the models using
an Adam optimizer with early stopping (tolerance 15 epochs), with a learning rate of 0.001 and a
batch size of 64.

5.1 Action Duration Classification.

We train the action duration classifier described in the previous section using only the visible
actions. The results are reported in Table 7. For comparison, we also show the performance of a
majority classifier, which labels every action as “short" by default. As shown in the table, despite
the simplicity of the classifier, the action duration classifier obtains good improvement over the
majority baseline.

5.2 Temporal Action Localization

Our 2SEAL method includes a scorer that measures the similarity between a video clip and an action
mention (see Figure 7). To implement this scorer, we experiment with three methods proposed in
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previous work: multimodal processing unit, multiple instance learning noise contrastive estimation,
and stacked cross attention.

Multimodal Processing Unit (MPU). We use the MPU model [14] to compute the similarity
score between the language representation of a narrated action and a video clip span. For the text
features, we fine-tune a pre-trained BERT-base-uncased [9] for domain adaption by on 884 vlog
transcripts with 80,749 sentences. We take embeddings from this model for the action mentions in
the transcripts by average pooling (the final embedding size is 768). In Section 6.2 we experiment
with variations of this text encoder. The text and visual features for each pair are linearly mapped to
the same embedding space. Next, the MPU model is applied to compute the interaction between the
two vectors of the same duration. The MPU model is composed of vector element-wise addition (’+’),
vector element-wise multiplication (’x’) and vector concatenation followed by a Fully Connected
(FC’) layer to combine the information from both textual and visual modalities. The outputs from
all three operations are concatenated to construct a multi-modal representation. This process is
also illustrated in the overall architecture in Figure 7. The resulting representation is given as input
to a linear layer and finally to a sigmoid function to obtain a similarity score.

Multiple Instance Learning Noise Contrastive Estimation (MIL-NCE). We use the MIL-NCE
model from [35] which was trained on HowTo100M [36]. The similarity score is computed as a dot
product between the text and video encoder outputs. The text encoder takes embeddings from a
GoogleNews-pretrained skipgram word2vec [37] implementation and further processes and pools
the embeddings to obtain a fixed-size representation. We use the MIL-NCE I3D! visual features,
and not the S3D features, for consistency reasons and to ensure a fair comparison between the
multimodal models. We empirically find it beneficial to threshold the similarities at mid-range value
after experimenting with linear regression models on the validation data. Note we do not fine-tune
this model but freeze it. Future work can explore how the method benefits from fine-tuning.

Stacked Cross Attention (SCA). We also experiment with the SCA method [29], and adapt its
Text-Image formulation. It first attends to image frames with respect to each word, and then
compares each word to its corresponding attended frame vector to determine the importance of
each word. The relevance R between the i-th word and the image is defined as the cosine similarity
between the i-th word vector v; and its attended frame vector a!. The final similarity score between
image I and sentence T is summarized by average pooling: $/,;(I.T) = 1 =1 R'(ej, a). The
textual features are represented using a Gated Recurrent Unit (GRU) [19] as in [29]. We use the
mid-range threshold for the similarity score.

2D Temporal Adjacent Networks (2D-TAN). We find the 2D-TAN model [63] suitable for our
task as it is built to localize multiple natural language queries in a video.

The video clips are represented using C3D [55] features and the action queries using GloVe
[42] embeddings, as described in the 2D-TAN paper [63]. We take as final proposal the action
localization proposal with the highest score.

We test the pre-trained model and also fine-tune it on our training and validation data. We run
two model configurations, which were trained on TACoS [45], namely “Pool” and “Conv” in our test
set. “Pool” and “Conv” represent max-pooling and stacked convolution respectively, which indicates
two different ways for moment feature extraction in the 2D-TAN model. We report the results of
fine-tuned “Conv” 2D-TAN model, which is the best performing 2D-TAN model configuration on
our test dataset.

https://tthub.dev/deepmind/mil-nce/i3d/1
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Recall

Method VA IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.7 mloU
All visible 25.7 67.4 23.6 8.3 41 216
All non-visible 74.3 0.0 0.0 0.0 0.0 0.0
Transcript Alignment (ours) | 25.7 | 733 473 22.2 72 308
MPU 75.5 57.9 27.0 12.4 62 214
2SEAL (ours) + MPU 790 | 746 487 228 8.6 319
MIL-NCE 26.1 62.9 22.2 8.0 42 205
2SEAL (ours) + MIL-NCE | 34.4 744 47.8 21.7 79 314
SCA 24.2 49.9 17.0 6.0 34 159
2SEAL (ours) + SCA 26.1 72.2 46.7 214 76 305
2D-TAN 25.7 49.4 23.1 10.9 3.7 176
2SEAL (ours) + 2D-TAN 25.7 73.4 47.0 21.6 7.7 308
Human | 859 835 71.8 52.0 350 503

Table 8. Results on the test set. “VA” stands for Visibility Accuracy.

5.3 Results

We evaluate the predictions made by the action localization methods using two evaluation metrics.
First, we compute the Visibility Accuracy (VA) to decide if the method can distinguish between
visible and not visible actions. Second, only for the visible actions, we compute the recall at different
Intersection over Union (IoU) thresholds: 0.1, 0.3, 0.5 and 0.7. A higher threshold means a stronger
constraint on how exact the match between the predicted and the ground truth location needs to
be. If the predicted interval has an IoU score with the ground truth greater than the threshold, we
consider the prediction as being correct. We also compute the average recall over all IoU values, as
the mloU. Note that if a method predicted that a visible action is non-visible, then the recall score
is penalized.

Table 8 presents the temporal action localization results on our data. The Transcript Alignment
method performs better than the MPU, MIL-NCE, SCA and 2D-TAN methods if we do not previously
apply our proposed 2SEAL method before. However, when using our 2SEAL method that combines
both the Transcript Alignment and a method to score long actions (either MPU, MIL-NCE, SCA,
or 2D-TAN), the performance improves significantly, with the system integrating the MPU model
leading to the best results. We suspect MIL-NCE may perform better if fine-tuned, however our
intention is not to compare MPU and MIL-NCE but to show how our method can improve over other
existing methods. The results confirm our initial hypothesis that actions of different duration benefit
from different methods: the transcript alignment excels at short actions, while the multimodal
model performs better for long actions.

6 ANALYSES AND DISCUSSION

To gain insights into the performance of our proposed model in relation to action duration, and to
understand the role played by different features, we perform several analyses.
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0-15s 16-35s 36-60s
Recall [MPU Align | MPU Align | MPU Align

IoU=0.1| 495 71.6| 90.7 76.6| 952 833
IoU=0.3 54 49.0| 73.4 514| 81.0 0.0
IoU=0.5 20 25.0| 22.0 17.8| 78.6 0.0
IoU=0.7 0.8 94| 5.6 19| 66.7 0.0

mIoU\ 12.0 32.0\ 38.9 29.9\ 717 165

Table 9. Breakdown by action duration (time span) on the validation set. The MPU model performance
increases with the increase of action time span, while transcript alignment (Align) performance decreases.

a) Actions that do not overlap

b) Actions that overlap with each other

“do the dishes”  “get my son ready for bed” ‘eat my snack” N ‘“drink my tea”

34 3839 57 21 2627 30
P P I i
f 3 £ 3} . { —
3 21 35 55 23 27 31 34
c) Actions that are included in each other d) Actions that occur at the same time
e L
< | ' :
.
! o e \ o
or “cut up an apple” C “make a snack for myself” use my flat iron” = “iron my hair
. , b . )
36,36 4 49 26,26 43,43
P: fa— I A P — 2 -
30 2 4849 1 28 37 42

Fig. 9. Randomly sampled qualitative results for different cases of action overlapping. Best viewed in color.

6.1 Action Duration Impact

If the action is brief, the IoU metric will be influenced by a few seconds compared to when the
action is longer in duration. This metric penalizes more the mislocalization of short actions, as
compared to the longer ones. This analysis is often done for the task of object detection, where the
IoU scores are grouped by bounding box size [44]. To verify our initial hypothesis that actions of
different duration benefit from different localization methods, we break down the results of the
MPU (the best scorer from among MPU, MIL-NCE, SCA and 2D-TAN without applying the 2SEAL
method) by action duration in Table 9. As shown in the table, the performance of the model is
connected to the duration of the actions. For long actions, the multimodal method obtains better
results compared to the transcript alignment method, while the opposite is true for short actions.

6.2 Text and Visual Features

In Table 10, we experiment with the MPU model (without applying the 2SEAL method) and look
into how each modality contributes to solving this task, by removing one modality at a time from
our best performing model. We also analyze other types of text embeddings. Inspired by [40, 49], we
focus on verbs and nouns, which we extract from the actions and compute their BERT embeddings.
We observe that the visual information contributes the most to the task of action localization, as
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Recall

Method IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.7 mloU
MPU 57.9 27.0 124 6.2 214
MPU verb only 33.5 18.5 9.2 48 137
MPU verb+noun only 33.8 18.7 9.8 48 14.0
MPU BERT w/o DA 46.9 26.4 14.1 54 19.0
MPU ELMo 48.5 23.7 10.6 6.2 184
MPU GloVe 41.6 22.5 11.6 69 17.2
MPU video only 41.5 254 13.9 6.8 18.0
MPU text only 25.3 11.6 43 2.2 9.1

Table 10. Results on the test set for different variations of the input to the MPU model. “DA” stands for
Domain Adaptation.

removing this information drastically lowers the model performance. Another observation is that
processing the entire action is more beneficial to the model than focusing only on nouns and verbs.

6.3 Qualitative Results

Randomly sampled results are shown in Figure 9. They are grouped by the different levels of action
overlapping: no overlap, intersection, inclusion and perfect overlap. From analyzing these results,
a future work direction emerges: detecting which actions are likely to happen at the same time,
which in turn can lead to better algorithms for action localization.

7 CONCLUSION

In this paper, we introduced a new dataset for action localization in vlogs — a growing form of
online video communication where everyday routine actions are described in language and also
presented visually. Using this dataset, we addressed the task of temporal action localization in
videos. We proposed 2SEAL — a simple yet effective method to visually localize the actions mentioned
in a video transcript, which relies on both language and vision, and specifically accounts for the
duration of an action for the purpose of building a more accurate system.

Through several extensive evaluations, we showed that our method improves and complements
other methods by first computing the expected duration of an action, and selectively applying a
language-based or multimodal model depending on the action duration. This work contributes
to the larger body of work for multimodal understanding, and at the same time builds a large
repository of vision-language representations covering a wide spectrum of actions that can be used
for downstream tasks such as action recognition systems, human behavior understanding, event
recognition, and others. The dataset introduced in this paper, the annotation tool, and the system
code are publicly available at https://github.com/MichiganNLP/vlog_action_localization.
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