skip to main content
10.1145/3500931.3500944acmotherconferencesArticle/Chapter ViewAbstractPublication PagesisaimsConference Proceedingsconference-collections
research-article

MDepressionKG: a knowledge graph for metabolism-depression associations

Published: 22 December 2021 Publication History

Abstract

Depression, as a global psychological disorder, is one of the important factors that cause human health, economic or social burden. Researches have shown that metabolism disorders caused by immune system diseases (i.e. diabetes, crohn disease, irritable bowel syndrome) are closely related to depression. There are large numbers of microbes in human micro-ecological environment. The metabolites of these microbes can also affect as the neurochemical and inflammatory factors in the human brain through the human brain-gut axis, which further affect the emergence of depression. In recent years, researches on the association between microbial metabolism and depression have been published in scientific literature, Wikipedia pages and other biological databases. But few efforts have been made to curate them as structured knowledge, which will make more convenient for the biological and medical community. In this research, we propose and construct a model of knowledge graph linking all metabolism entities of human and their microbes to depression disorder (called MDepressionKG). MDepressionKG has the following advantages: (1) It integrates the human microbial metabolism network, human diseases, microbes and other fields ontologies. (2) The knowledge graph provides a semantic-based logical reasoning for generating potential associations automatically. (3) Various applications such as the discovery of depression comorbidities can be applied as case studies to provide explorations for further depression intervention. The friendly interactive platform for knowledge retrieval and visualization, which is freely available at the URL at http://microbekg.msbio.pro/explore/MDepressionKG.

References

[1]
Institute of Health Metrics and Evaluation. Global Health Data Exchange (GHDx). http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/d780dffbe8a381b25e1416884959e88b.
[2]
Bathina, K. C., Ten Thij, M., Lorenzo-Luaces, L., Rutter, L. A., & Bollen, J. (2021). Individuals with depression express more distorted thinking on social media. Nature Human Behaviour, 5(4), 458--466.
[3]
Smith, K. (2014). Mental health: a world of depression. Nature News, 515(7526), 180.
[4]
Palgi, Y., Shrira, A., Ring, L., Bodner, E., Avidor, S., Bergman, Y., … & Hoffman, Y. (2020). The loneliness pandemic: Loneliness and other concomitants of depression, anxiety and their comorbidity during the COVID-19 outbreak. Journal of affective disorders, 275, 109.
[5]
Lee, J. O., Jones, T. M., Yoon, Y., Hackman, D. A., Yoo, J. P., & Kosterman, R. (2019). Young adult unemployment and later depression and anxiety: does childhood neighborhood matter? Journal of youth and adolescence, 48(1), 30--42.
[6]
Malgaroli, M., Maccallum, F., & Bonanno, G. A. (2018). Symptoms of persistent complex bereavement disorder, depression, and PTSD in a conjugally bereaved sample: a network analysis. Psychological medicine, 48(14), 2439--2448.
[7]
Price, M., Legrand, A. C., Brier, Z. M., & Hébert-Dufresne, L. (2019). The symptoms at the center: examining the comorbidity of posttraumatic stress disorder, generalized anxiety disorder, and depression with network analysis. Journal of psychiatric research, 109, 52--58.
[8]
Milaneschi, Y., Simmons, W. K., van Rossum, E. F., & Penninx, B. W. (2019). Depression and obesity: evidence of shared biological mechanisms. Molecular psychiatry, 24(1), 18--33.
[9]
Gao, X., Tang, Y., Lei, N., Luo, Y., Chen, P., Liang, C., … & Zhang, Y. (2021). Symptoms of anxiety/depression is associated with more aggressive inflammatory bowel disease. Scientific Reports, 11(1), 1--7.
[10]
Aguilar, A. (2016). Depression is associated with renal complications. Nature Reviews Nephrology, 12(8), 444--444.
[11]
Menard, C., Pfau, M. L., Hodes, G. E., Kana, V., Wang, V. X., Bouchard, S., … & Russo, S. J. (2017). Social stress induces neurovascular pathology promoting depression. Nature neuroscience, 20(12), 1752--1760.
[12]
Ten Have, M., Lamers, F., Wardenaar, K., Beekman, A., de Jonge, P., van Dorsselaer, S., … & de Graaf, R. (2016). The identification of symptom-based subtypes of depression: A nationally representative cohort study. Journal of affective disorders, 190, 395--406.
[13]
Rees, L. (1960). Treatment of depression by drugs and other means. Nature, 186(4719), 114--120.
[14]
Gaynes, B. N., Lux, L., Gartlehner, G., Asher, G., Forman - Hoffman, V., Green, J., … & Lohr, K. N. (2020). Defining treatment - resistant depression. Depression and anxiety, 37(2), 134--145.
[15]
Ghandour, R. M., Sherman, L. J., Vladutiu, C. J., Ali, M. M., Lynch, S. E., Bitsko, R. H., & Blumberg, S. J. (2019). Prevalence and treatment of depression, anxiety, and conduct problems in US children. The Journal of pediatrics, 206, 256--267.
[16]
Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G., & Cryan, J. F. (2019). Microbiota and the social brain. Science, 366(6465).
[17]
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489(7415), 220--230.
[18]
Cryan, J. F., O'Riordan, K. J., Cowan, C. S., Sandhu, K. V., Bastiaanssen, T. F., Boehme, M., … & Dinan, T. G. (2019). The microbiota-gut-brain axis. Physiological reviews.
[19]
Clemente, J. C., Ursell, L. K., Parfrey, L. W., & Knight, R. (2012). The impact of the gut microbiota on human health: an integrative view. Cell, 148(6), 1258--1270.
[20]
Morais, L. H., Schreiber, H. L., & Mazmanian, S. K. (2021). The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 19(4), 241--255.
[21]
Bot, M., Milaneschi, Y., Al-Shehri, T., Amin, N., Garmaeva, S., Onderwater, G. L., … & Sattar, N. (2020). Metabolomics profile in depression: a pooled analysis of 230 metabolic markers in 5283 cases with depression and 10, 145 controls. Biological Psychiatry, 87(5), 409--418.
[22]
Valles-Colomer, M., Falony, G., Darzi, Y., Tigchelaar, E. F., Wang, J., Tito, R. Y., … & Raes, J. (2019). The neuroactive potential of the human gut microbiota in quality of life and depression. Nature microbiology, 4(4), 623--632.
[23]
Parker, A., Fonseca, S., & Carding, S. R. (2020). Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes, 11(2), 135--157.
[24]
Pu, J., Yu, Y., Liu, Y., Tian, L., Gui, S., Zhong, X., … & Xie, P. (2020). MENDA: a comprehensive curated resource of metabolic characterization in depression. Briefings in bioinformatics, 21(4), 1455--1464.
[25]
Weis, J. W., & Jacobson, J. M. (2021). Learning on knowledge graph dynamics provides an early warning of impactful research. Nature Biotechnology, 1--8.
[26]
Hu, J., Lepore, R., Dobson, R. J., Al-Chalabi, A., M Bean, D., & Iacoangeli, A. (2021). DGLinker: flexible knowledge-graph prediction of disease-gene associations. Nucleic Acids Research.
[27]
Liu, T., Pan, X., Wang, X., Feenstra, K. A., Heringa, J., & Huang, Z. (2020). Exploring the Microbiota-Gut-Brain Axis for Mental Disorders with Knowledge Graphs. Journal of Artificial Intelligence for Medical Sciences, 1(3-4), 30--42.
[28]
Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., … & Yamanishi, Y. (2007). KEGG for linking genomes to life and the environment. Nucleic acids research, 36(suppl_1), D480-D484.
[29]
Yang, J., Zheng, P., Li, Y., Wu, J., Tan, X., Zhou, J., … & Xie, P. (2020). Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. Science advances, 6(49), eaba8555.
[30]
Fu, C., Zhong, R., Jiang, X., He, T., & Jiang, X. (2020, October). An Integrated Knowledge Graph for Microbe-Disease Associations. In International Conference on Health Information Science (pp. 79--90). Springer, Cham.
[31]
Zhong, R., Li, X., Sun, X., Fu, C., He, T., & Jiang, X. (2019, November). Microbial Interaction Extraction from Biomedical Literature using Max-Bi-LSTM. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 723--726). IEEE.
[32]
Federhen, S. (2012). The NCBI taxonomy database. Nucleic acids research, 40(D1), D136-D143.
[33]
Lipscomb, C. E. (2000). Medical subject headings (MeSH). Bulletin of the Medical Library Association, 88(3), 265.
[34]
Güting, Ralf Hartmut. "GraphDB: Modeling and querying graphs in databases." VLDB. Vol. 94. 1994.
[35]
Bishop, Barry, and Spas Bojanov. "Implementing OWL 2 RL and OWL 2 QL Rule-Sets for OWLIM." OWLED. Vol. 796. 2011.
[36]
Kim, J. K., Lee, K. E., Lee, S. A., Jang, H. M., & Kim, D. H. (2020). Interplay between human gut bacteria Escherichia coli and Lactobacillus mucosae in the occurrence of neuropsychiatric disorders in mice. Frontiers in immunology, 11, 273.
[37]
Frank, D., Kuts, R., Tsenter, P., Gruenbaum, B. F., Grinshpun, Y., Zvenigorodsky, V., … & Boyko, M. (2019). The effect of pyruvate on the development and progression of post-stroke depression: A new therapeutic approach. Neuropharmacology, 155, 173--184.
[38]
Rosmond, R. (2004). Obesity and depression: same disease, different names? Medical hypotheses, 62(6), 976--979.
[39]
Mendenhall, E., Kohrt, B. A., Norris, S. A., Ndetei, D., & Prabhakaran, D. (2017). Non-communicable disease syndemics: poverty, depression, and diabetes among low-income populations. The Lancet, 389(10072), 951--963.
[40]
Rosania, A. E., Low, K. G., McCormick, C. M., & Rosania, D. A. (2009). Stress, depression, cortisol, and periodontal disease. Journal of periodontology, 80(2), 260--266.
[41]
Clark, J. G., Srinath, A. I., Youk, A. O., Kirshner, M. A., McCarthy, F. N., Keljo, D. J., … & Szigethy, E. M. (2014). Predictors of depression in youth with Crohn disease. Journal of pediatric gastroenterology and nutrition, 58(5), 569.

Cited By

View all
  • (2024)Knowledge graphs in psychiatric research: Potential applications and future perspectivesActa Psychiatrica Scandinavica10.1111/acps.13717151:3(180-191)Online publication date: 17-Jun-2024
  • (2023)Healthcare knowledge graph construction: A systematic review of the state-of-the-art, open issues, and opportunitiesJournal of Big Data10.1186/s40537-023-00774-910:1Online publication date: 28-May-2023

Index Terms

  1. MDepressionKG: a knowledge graph for metabolism-depression associations

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ISAIMS '21: Proceedings of the 2nd International Symposium on Artificial Intelligence for Medicine Sciences
    October 2021
    593 pages
    ISBN:9781450395588
    DOI:10.1145/3500931
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 December 2021

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Brain-gut axis
    2. Depression
    3. Knowledge graph
    4. Microbial metabolism

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    ISAIMS 2021

    Acceptance Rates

    Overall Acceptance Rate 53 of 112 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)43
    • Downloads (Last 6 weeks)5
    Reflects downloads up to 05 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Knowledge graphs in psychiatric research: Potential applications and future perspectivesActa Psychiatrica Scandinavica10.1111/acps.13717151:3(180-191)Online publication date: 17-Jun-2024
    • (2023)Healthcare knowledge graph construction: A systematic review of the state-of-the-art, open issues, and opportunitiesJournal of Big Data10.1186/s40537-023-00774-910:1Online publication date: 28-May-2023

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media