skip to main content
10.1145/3502060.3502320acmotherconferencesArticle/Chapter ViewAbstractPublication PagesbecbConference Proceedingsconference-collections
research-article

The Role of miR-21 on the Expression of β2-Microglobulin in Steroid-resistant Nephrotic Syndrome Children

Authors Info & Claims
Published:14 February 2022Publication History

ABSTRACT

Nephrotic syndrome (NS) in children has some mysterious prognosis in the perspective of its therapeutic response. This study aims to determine the role of miR-21 in β-2 microglobulin (B2M) expression among SRNS children. The open-prospective cohort study was conducted at Hasan Sadikin General Hospital, Indonesia. A total of 24 children (age 1–18 years) with NS were enrolled in this study. Meanwhile, blood samples were collected prior to any treatment. The whole blood samples were collected from 12 SRNS and control. Moreover, RNA isolation was carried out with blood plasma samples stored in a cooler at -800C, while miR-21 expression was measured using qRT-PCR. The difference between miRNAs expression analyzed with Livak and the correlation between B2M and miR-21 expression were analyzed using Spearman correlation analysis. Based on the results, there were notable upregulation of miR-21 in SRNS compared to SSNS 2-ΔΔCt > 1. However, no correlation was observed between B2M expression with the upregulation of miR-21 ( -1 < rs < 1, p > 0.05). The miR-21 is upregulated in children with SRNS. This indicates that the expression level of this miRNA potentially applicable as a predictor for SRNS development in children.

References

  1. Trautmann, A.; Schnaidt, S.; Lipska-zi, B.S.; Bodria, M.; Ozaltin, F.; Emma, F.; Anarat, A.; Melk, A.; Azocar, M.; Oh, J.; 2017. Long-Term Outcome of Steroid-Resistant Nephrotic Syndrome in Children. 2017 3055–3065, doi:10.1681/ASN.2016101121.Google ScholarGoogle Scholar
  2. Hoefele, J.; Beck, B.B.; Weber, L.T.; Brinkkötter, P. 2018. Steroid-resistent nephrotic syndrome. Medizinische Genet. doi:10.1007/s11825-018-0215-1.Google ScholarGoogle Scholar
  3. Srivastava, R..; Aggarwal, V.2012. Steroid Resistant Nephrotic Syndrome in Children. Apollo Med. doi:10.1016/s0976-0016(11)60262-7.Google ScholarGoogle Scholar
  4. Hjorten, R.; Anwar, Z.; Reidy, K.J. 2016 Long-term outcomes of childhood onset nephrotic syndrome. Front. Pediatr.Google ScholarGoogle Scholar
  5. Rizk, M.K.; El-Nawawy, A.; Abdel-Kareem, E.; Amer, E.S.; El-Gezairy, D.; El-Shafei, A.Z. 2005 Serum interleukins and urinary microglobulin in children with idiopathic nephrotic syndrome. East. Mediterr. Heal. J. 11, 993–1002.Google ScholarGoogle Scholar
  6. Argyropoulos, C.P.; Chen, S.S.; Ng, Y.H.; Roumelioti, M.E.; Shaffi, K.; Singh, P.P. 2017 Tzamaloukas, A.H. Rediscovering Beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front. Med. 4, doi:10.3389/fmed.2017.00073.Google ScholarGoogle Scholar
  7. Xu, D.; Lu, C.; Guo, Y.; Yue, H. 2016 High excretion of urinary beta-2-microglobulin and IgG predicts progressive renal function in idiopathic membranous nephropathy. Int. J. Clin. Exp. Med. 9, 11341–11347.Google ScholarGoogle Scholar
  8. Hofstra, J.M.; Deegens, J.K.J.; Willems, H.L.; Wetzels, J.F.M. 2008 Beta-2-microglobulin is superior to N-acetyl-beta-glucosaminidase in predicting prognosis in idiopathic membranous nephropathy. Nephrol. Dial. Transplant. 23, 2546–2551, doi:10.1093/ndt/gfn007.Google ScholarGoogle ScholarCross RefCross Ref
  9. Yoon SJ, Shin IJ. Lee JS, K.H. 2008 Urinary N-acetyl-beta-D glocosaminidase and beta-2 microglobulin in children with various renal diseases. 2, 143–149.Google ScholarGoogle Scholar
  10. Lim, B.J.; Yang, J.W.; Do, W.S.; Fogo, A.B. 2016 Pathogenesis of focal segmental glomerulosclerosis. J. Pathol. Transl. Med. 50, 405–410, doi:10.4132/jptm.2016.09.21.Google ScholarGoogle ScholarCross RefCross Ref
  11. Fogo, A.B. 2014 Causes and pathogenesis of focal segmental glomerulosclerosis. Nat. Publ. Gr. doi:10.1038/nrneph.2014.216.Google ScholarGoogle Scholar
  12. D'agati, V.D.; Kaskel, F.J.; Falk, R.J. 2011 Medical Progress Focal Segmental Glomerulosclerosis. N Engl J Med 365, 2398–411.Google ScholarGoogle ScholarCross RefCross Ref
  13. He, J.C.; Husain, M.; Sunamoto, M.; Agati, V.D.D.; Klotman, M.E.; Iyengar, R.; Klotman, P.E. 2004 Nef stimulates proliferation of glomerular podocytes through activation of Src- dependent Stat3 and MAPK1 , 2 pathways. 114, doi:10.1172/JCI200421004.The.Google ScholarGoogle Scholar
  14. He, L.; Hannon, G.J.; Harbor, C.S. 2004 MicroRNAs: SMALL RNAs WITH A BIG ROLE IN GENE REGULATION. 5, doi:10.1038/nrg1379.Google ScholarGoogle Scholar
  15. DG Padmashree,NR Swamy, 2013. Molecular signaling cascade of miRNAs in causing Diabetes Nephropathy. BioinformaticsGoogle ScholarGoogle Scholar
  16. Bartel, D.P. 2009 MicroRNAs: Target Recognition and Regulatory Functions. Cell 136, 215–233.Google ScholarGoogle Scholar
  17. Bhatt, K.; Kato, M.; Natarajan, R. 2016 Mini-review: emerging roles of microRNAs in the pathophysiology of renal diseases. Am. J. Physiol. Physiol. 310, F109–F118, doi:10.1152/ajprenal.00387.2015.Google ScholarGoogle ScholarCross RefCross Ref
  18. Friedman, R.C.; Farh, K.K.; Burge, C.B.; Bartel, D.P. 2009 Most mammalian mRNAs are conserved targets of microRNAs. 92–105, doi:10.1101/gr.082701.108.Google ScholarGoogle Scholar
  19. Nascimento, L.R. do; Domingueti, C.P. 2019 MicroRNAs: new biomarkers and promising therapeutic targets for diabetic kidney disease. J. Bras. Nefrol. 41, 412–422, doi:10.1590/2175-8239-JBN-2018-0165.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kato, M.; Castro, N.E.; Natarajan, R. 2013 MicroRNAs: Potential mediators and biomarkers of diabetic complications. Free Radic. Biol. Med. 64, 85–94, doi:10.1016/j.freeradbiomed.2013.06.009.Google ScholarGoogle ScholarCross RefCross Ref
  21. Livak, K.J.; Schmittgen, T.D. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408, doi:10.1006/meth.2001.1262.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kim, K.M.; Kim, S.-S.; Kim, H.; Koo, T.; Im, E.Y.; Kim, S.B. 2011 Higher serum beta2-microglobulin levels are associated with better survival in chronic hemodialysis patients: a reverse epidemiology. Clin. Nephrol. 75, 458–465, doi:10.5414/cnp75458.Google ScholarGoogle ScholarCross RefCross Ref
  23. Herrero-Morín, J.D.; Málaga, S.; Fernández, N.; Rey, C.; Diéguez, M.Á.; Solís, G.; Concha, A.; Medina, A. 2007 Cystatin C and beta2-microglobulin: Markers of glomerular filtration in critically ill children. Crit. Care 11, 1–7, doi:10.1186/cc5923.Google ScholarGoogle ScholarCross RefCross Ref
  24. Stanga, Z.; Nock, S.; Medina-Escobar, P.; Nydegger, U.E.; Risch, M.; Risch, L. 2013 Factors Other than the Glomerular Filtration Rate That Determine the Serum Beta-2-Microglobulin Level. PLoS One 8, doi:10.1371/journal.pone.0072073.Google ScholarGoogle Scholar
  25. D'Agati, V.D.; Kaskel, F.J.; Falk, R.J. 2011 Focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 2398–2411.Google ScholarGoogle ScholarCross RefCross Ref
  26. Reidy, K.; Kaskel, F.J. 2007 Pathophysiology of focal segmental glomerulosclerosis. Pediatr. Nephrol.Google ScholarGoogle Scholar
  27. Zhong, X.; Chung, A.C.K.; Chen, H.-Y.; Meng, X.-M.; Lan, H.Y. 2011 Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J. Am. Soc. Nephrol. 22, 1668–1681, doi:10.1681/ASN.2010111168.Google ScholarGoogle ScholarCross RefCross Ref
  28. Huang, C.-K.; Bär, C.; Thum, T. 2020 miR-21, Mediator, and Potential Therapeutic Target in the Cardiorenal Syndrome. Front. Pharmacol. 11, 726, doi:10.3389/fphar.2020.00726.Google ScholarGoogle Scholar
  29. Mousa, S.O.; Saleh, S.M.; Aly, H.M.; Amin, M.H. 2018 Evaluation of serum soluble urokinase plasminogen activator receptor as a marker for steroid-responsiveness in children with primary nephrotic syndrome. Saudi J. Kidney Dis. Transpl. 29, 290–296, doi:10.4103/1319-2442.229266.Google ScholarGoogle ScholarCross RefCross Ref
  30. Chau, Y.Y.; Brownstein, D.; Mjoseng, H.; Lee, W.C.; Buza-Vidas, N.; Nerlov, C.; Jacobsen, S.E.; Perry, P.; Berry, R.; Thornburn, A.; 2011 Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1. PLoS Genet. 7, doi:10.1371/journal.pgen.1002404.Google ScholarGoogle Scholar
  31. Wang, W.; Liu, R.; Su, Y.; Li, H.; Xie, W.; Ning, B. 2018 MicroRNA-21-5p mediates TGF-β-regulated fibrogenic activation of spinal fibroblasts and the formation of fibrotic scars after spinal cord injury. Int. J. Biol. Sci. 14, 178–188, doi:10.7150/ijbs.24074.Google ScholarGoogle ScholarCross RefCross Ref
  32. Kölling, M.; Kaucsar, T.; Schauerte, C.; Hübner, A.; Dettling, A.; Park, J.K.; Busch, M.; Wulff, X.; Meier, M.; Scherf, K.; 2017 Therapeutic miR-21 Silencing Ameliorates Diabetic Kidney Disease in Mice. Mol. Ther. 25, 165–180, doi:10.1016/j.ymthe.2016.08.001.Google ScholarGoogle ScholarCross RefCross Ref
  33. Hinkel, R.; Ramanujam, D.; Kaczmarek, V.; Howe, A.; Klett, K.; Beck, C.; Dueck, A.; Thum, T.; Laugwitz, K.-L.; Maegdefessel, L.; 2020 AntimiR-21 Prevents Myocardial Dysfunction in a Pig Model of Ischemia/Reperfusion Injury. J. Am. Coll. Cardiol. 75, 1788–1800, doi:https://doi.org/10.1016/j.jacc.2020.02.041.Google ScholarGoogle ScholarCross RefCross Ref
  34. Javanmard, S.H.; Vaseghi, G.; Ghasemi, A.; Rafiee, L.; Ferns, G.A.; Esfahani, H.N.; Nedaeinia, R. 2020 Therapeutic inhibition of microRNA-21 (miR-21) using locked-nucleic acid (LNA)-anti-miR and its effects on the biological behaviors of melanoma cancer cells in preclinical studies. Cancer Cell Int. 20, 1–12, doi:10.1186/s12935-020-01394-6.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. The Role of miR-21 on the Expression of β2-Microglobulin in Steroid-resistant Nephrotic Syndrome Children
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          BECB 2021: 2021 International Symposium on Biomedical Engineering and Computational Biology
          August 2021
          262 pages
          ISBN:9781450384117
          DOI:10.1145/3502060

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 14 February 2022

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited
        • Article Metrics

          • Downloads (Last 12 months)5
          • Downloads (Last 6 weeks)0

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format