skip to main content
survey

A Systematic Review on Data Scarcity Problem in Deep Learning: Solution and Applications

Authors Info & Claims
Published:13 September 2022Publication History
Skip Abstract Section

Abstract

Recent advancements in deep learning architecture have increased its utility in real-life applications. Deep learning models require a large amount of data to train the model. In many application domains, there is a limited set of data available for training neural networks as collecting new data is either not feasible or requires more resources such as in marketing, computer vision, and medical science. These models require a large amount of data to avoid the problem of overfitting. One of the data space solutions to the problem of limited data is data augmentation. The purpose of this study focuses on various data augmentation techniques that can be used to further improve the accuracy of a neural network. This saves the cost and time consumption required to collect new data for the training of deep neural networks by augmenting available data. This also regularizes the model and improves its capability of generalization. The need for large datasets in different fields such as computer vision, natural language processing, security, and healthcare is also covered in this survey paper. The goal of this paper is to provide a comprehensive survey of recent advancements in data augmentation techniques and their application in various domains.

REFERENCES

  1. Aceto G., Ciuonzo D., Montieri A., and Pescapè A.. 2019. MIMETIC: Mobile encrypted traffic classification using multimodal deep learning. Computer Networks 165, 106944. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Agarwal A., Vatsa M., Singh R., and Ratha N.. 2021. Cognitive data augmentation for adversarial defense via pixel masking. Pattern Recognition Letters. Google ScholarGoogle ScholarCross RefCross Ref
  3. Alqahtani H., Kavakli-Thorne M., and Kumar G.. 2019. Applications of generative adversarial networks (GANs): An updated review. Archives of Computational Methods in Engineering. Google ScholarGoogle ScholarCross RefCross Ref
  4. Andresini G., Appice A., De Rose L., and Malerba D.. 2021. GAN Augmentation to Deal with Imbalance in Imaging-based Intrusion Detection 123, 108127.Google ScholarGoogle Scholar
  5. Apte C.. 2011. ACM Digital Library, Association for computing machinery. Special Interest Group on Knowledge Discovery & Data Mining, & Association for Computing Machinery. Special Interest Group on Management of Data. (2011). Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bang S., Baek F., Park S., Kim W., and Kim H.. 2020. Image augmentation to improve construction resource detection using generative adversarial networks, cut-and-paste, and image transformation techniques. Automation in Construction 115. Google ScholarGoogle ScholarCross RefCross Ref
  7. Bastani O., Ioannou Y., Lampropoulos L., Vytiniotis D., Nori A. V., and Criminisi A., (n.d.). Measuring Neural Net Robustness with Constraints.Google ScholarGoogle Scholar
  8. Bowles C., Chen L., Guerrero R., Bentley P., Hammers A., Dickie D. A., and Vald M. (n.d.). GAN Augmentation: Augmenting Training Data using Generative Adversarial Networks.Google ScholarGoogle Scholar
  9. Brunetti A., Buongiorno D., Trotta G. F., and Bevilacqua V.. 2018. Computer vision and deep learning techniques for pedestrian detection and tracking: A survey. Neurocomputing 300, 1733. Google ScholarGoogle ScholarCross RefCross Ref
  10. Carlini N. and Wagner D.. 2017. Towards evaluating the robustness of neural networks. Proceedings - IEEE Symposium on Security and Privacy. 3957. Google ScholarGoogle ScholarCross RefCross Ref
  11. Chae D. K., Kim S. W., Kang J. S., and Choi J.. 2019. Rating augmentation with generative adversarial networks towards accurate collaborative filtering. The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019. 26162622. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chaitanya K., Karani N., Baumgartner C. F., Erdil E., Becker A., Donati O., and Konukoglu E.. 2021. Semi-supervised task-driven data augmentation for medical image segmentation. Medical Image Analysis 68. Google ScholarGoogle ScholarCross RefCross Ref
  13. Chen L., Yang H., Wu S., and Gao Z.. 2017. Data generation for improving person re-identification. MM 2017 - Proceedings of the 2017 ACM Multimedia Conference. 609617. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Cheng A.. 2019. PAC-GAN: Packet generation of network traffic using generative adversarial networks. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference, IEMCON 2019, 728734. Google ScholarGoogle ScholarCross RefCross Ref
  15. Choi E., Bahadori M. T., Song L., Stewart W. F., and Sun J.. 2017. GRAM: Graph-based attention model for healthcare representation learning. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Part F129685, 787795. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Costa-jussà M. R., Allauzen A., Barrault L., Cho K., and Schwenk H.. 2017. Introduction to the special issue on deep learning approaches for machine translation. Computer Speech and Language 46, 367373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Cubuk E. D., Zoph B., Shlens J., and Le Q. V. (n.d.). Randaugment: Practical Automated Data Augmentation with a Reduced Search Space.Google ScholarGoogle Scholar
  18. Cubuk E. D., Zoph B., Vasudevan V., and Le Google Brain Q. V. (n.d.). AutoAugment: Learning Augmentation Strategies from Data. https://pillow.readthedocs.io/en/5.1.x/.Google ScholarGoogle Scholar
  19. Dai Y. and Wang G.. 2018. A deep inference learning framework for healthcare. Pattern Recognition Letters. Google ScholarGoogle ScholarCross RefCross Ref
  20. Daumé H.. 2007. Frustratingly Easy Domain Adaptation. http://hal3.name/easyadapt.pl.gz.Google ScholarGoogle Scholar
  21. Day O. and Khoshgoftaar T. M.. 2017. A survey on heterogeneous transfer learning. Journal of Big Data 4, 1 (2017) Google ScholarGoogle ScholarCross RefCross Ref
  22. DeVries T. and Taylor G. W.. 2017a. Dataset Augmentation in Feature Space. http://arxiv.org/abs/1702.05538.Google ScholarGoogle Scholar
  23. DeVries T. and Taylor G. W.. 2017b. Improved Regularization of Convolutional Neural Networks with Cutout. http://arxiv.org/abs/1708.04552.Google ScholarGoogle Scholar
  24. Dhiraj and D. K. Jain. 2019. An evaluation of deep learning based object detection strategies for threat object detection in baggage security imagery. Pattern Recognition Letters 120, 112119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jun Ding, Chen B., Liu H., and Huang M.. 2016. Convolutional neural network with data augmentation for SAR target recognition. IEEE Geoscience and Remote Sensing Letters 13, 3 (2016), 364368. Google ScholarGoogle ScholarCross RefCross Ref
  26. Ding Junhua , Li X., Kang X., and Gudivada V. N.. 2019. A case study of the augmentation and evaluation of training data for deep learning. Journal of Data and Information Quality 11, 4 (2019). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Du Y., Yan Y., Chen S., and Hua Y.. 2020. Object-adaptive LSTM network for real-time visual tracking with adversarial data augmentation. Neurocomputing 384, 6783. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Duan L., Tsang I. W., and Xu D.. 2012. Domain transfer multiple kernel learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 3 (2012), 465479. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Fayek H. M., Lech M., and Cavedon L.. 2017. Evaluating deep learning architectures for speech emotion recognition. Neural Networks 92, 6068. Google ScholarGoogle ScholarCross RefCross Ref
  30. Frid-Adar M., Diamant I., Klang E., Amitai M., Goldberger J., and Greenspan H.. 2018. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321331. Google ScholarGoogle ScholarCross RefCross Ref
  31. Fujiyoshi H., Hirakawa T., and Yamashita T.. 2019. Deep learning-based image recognition for autonomous driving. In IATSS Research 43, 4 (2019), 244252. Elsevier B.V. Google ScholarGoogle ScholarCross RefCross Ref
  32. Gatys L. A., Ecker A. S., and Bethge M.. 2016. Image style transfer using convolutional neural networks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December. 24142423. Google ScholarGoogle ScholarCross RefCross Ref
  33. Goodfellow I. J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., and Bengio Y.. (n.d.). Generative Adversarial Nets. http://www.github.com/goodfeli/adversarial.Google ScholarGoogle Scholar
  34. Goodfellow I. J., Shlens J., and Szegedy C.. 2014. Explaining and Harnessing Adversarial Examples. http://arxiv.org/abs/1412.6572.Google ScholarGoogle Scholar
  35. Guo G. and Zhang N.. 2019. A survey on deep learning based face recognition. Computer Vision and Image Understanding 189. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Halevy A., Norvig P., and Pereira F.. 2009. The unreasonable effectiveness of data. IEEE Intelligent Systems 24, 2 (2009), 812. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Han D., Liu Q., and Fan W.. 2018. A new image classification method using CNN transfer learning and web data augmentation. Expert Systems with Applications 95, 4356. Google ScholarGoogle ScholarCross RefCross Ref
  38. Han X., Liu Z., and Sun M. (n.d.). Neural Knowledge Acquisition via Mutual Attention between Knowledge Graph and Text. www.aaai.org.Google ScholarGoogle Scholar
  39. Haralabopoulos G., Torres M. T., Anagnostopoulos I., and McAuley D.. 2021. Text data augmentations: Permutation, antonyms and negation. Expert Systems with Applications 177, (2020). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Harel M. and Mannor S.. 2011. Learning from Multiple Outlooks.Google ScholarGoogle Scholar
  41. Hidayat A. A., Purwandari K., Cenggoro T. W., and Pardamean B.. 2021. A convolutional neural network-based ancient Sundanese character classifier with data augmentation. Procedia Computer Science 179, (2020) 195201. Google ScholarGoogle ScholarCross RefCross Ref
  42. Ho D., Liang E., Stoica I., Abbeel P., and Chen X. (n.d.). Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules. https://github.com/arcelien/pba.Google ScholarGoogle Scholar
  43. Inoue H.. 2018. Data Augmentation by Pairing Samples for Images Classification. http://arxiv.org/abs/1801.02929.Google ScholarGoogle Scholar
  44. Ioffe S. and Szegedy C. (n.d.). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.Google ScholarGoogle Scholar
  45. Iqbal T. and Qureshi S.. 2020. The survey: Text generation models in deep learning. In Journal of King Saud University - Computer and Information Sciences. King Saud bin Abdulaziz University. Google ScholarGoogle ScholarCross RefCross Ref
  46. Jackson P. T., Atapour-Abarghouei A., Bonner S., Breckon T., and Obara B. (n.d.). Style Augmentation: Data Augmentation via Style Randomization.Google ScholarGoogle Scholar
  47. Johnson J. M. and Khoshgoftaar T. M.. 2019. Survey on deep learning with class imbalance. Journal of Big Data 6, 1 (2019) Google ScholarGoogle ScholarCross RefCross Ref
  48. Karystinos G. N. and Pados D. A.. 2000. On overfitting, generalization, and randomly expanded training sets. In IEEE Transactions On Neural Networks (11, 5).Google ScholarGoogle Scholar
  49. Katiyar S. and Borgohain S. K.. 2021. Image Captioning Using Deep Stacked LSTMs, Contextual Word Embeddings and Data Augmentation. http://arxiv.org/abs/2102.11237.Google ScholarGoogle Scholar
  50. Khan S. H., Hayat M., Bennamoun M., Sohel F. A., and Togneri R.. 2018. Cost-sensitive learning of deep feature representations from imbalanced data. IEEE Transactions on Neural Networks and Learning Systems 29, 8 (2018), 35733587. Google ScholarGoogle ScholarCross RefCross Ref
  51. Kitchenham B. and Brereton P.. 2013. A systematic review of systematic review process research in software engineering. Information and Software Technology 55, 12 (2013), 20492075. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Krizhevsky A., Sutskever I., and Hinton G. E. (n.d.). ImageNet Classification with Deep Convolutional Neural Networks. http://code.google.com/p/cuda-convnet/.Google ScholarGoogle Scholar
  53. Kulis B., Saenko K., and Darrell T.. 2011. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 17851792. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Lei C., Hu B., Wang D., Zhang S., and Chen Z.. 2019. A preliminary study on data augmentation of deep learning for image classification. ACM International Conference Proceeding Series. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Lemley J., Bazrafkan S., and Corcoran P.. 2017. Smart augmentation learning an optimal data augmentation strategy. IEEE Access 5, 58585869. Google ScholarGoogle ScholarCross RefCross Ref
  56. Li F., Jialin Pan S., Jin O., Yang Q., and Zhu X.. 2012. Cross-Domain Co-Extraction of Sentiment and Topic Lexicons.Google ScholarGoogle Scholar
  57. Li W., Duan L., Xu D., and Tsang I. W.. 2014. Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence 36, 6 (2014), 11341148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Lim S., Kim I., Kim T., Kim C., Brain K., and Kim S. (n.d.). Fast AutoAugment. https://github.com/kakaobrain/fast-autoaugment.Google ScholarGoogle Scholar
  59. Liu S., Lee K., and Lee I.. 2020. Document-level multi-topic sentiment classification of Email data with BiLSTM and data augmentation. Knowledge-Based Systems 197. Google ScholarGoogle ScholarCross RefCross Ref
  60. Liu S., Guo H., Hu J. G., Zhao X., Zhao C., Wang T., Zhu Y., Wang J., and Tang M.. 2020. A novel data augmentation scheme for pedestrian detection with attribute preserving GAN. Neurocomputing 401, 123132. Google ScholarGoogle ScholarCross RefCross Ref
  61. Long M., Wang J., Ding G., Pan S. J., and Yu P. S.. 2014. Adaptation regularization: A general framework for transfer learning. IEEE Transactions on Knowledge and Data Engineering 26, 5 (2014), 10761089. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Long Y., Li Y., Zhang Q., Wei S., Ye H., and Yang J.. 2020. Acoustic data augmentation for Mandarin-English code-switching speech recognition. Applied Acoustics 161. Google ScholarGoogle ScholarCross RefCross Ref
  63. Lu C. Y., Arcega Rustia D. J., and Lin Ta-Te. 2019. Generative adversarial network based image augmentation for insect pest classification enhancement. IFAC-PapersOnLine 52, 30 (2019), 15. Google ScholarGoogle ScholarCross RefCross Ref
  64. Ma F., Chitta R., You Q., Zhou J., Xiao H., and Gao J.. 2018. KAME: Knowledge-based attention model for diagnosis prediction in healthcare. International Conference on Information and Knowledge Management, Proceedings. 743752. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Ma F., You Q., Gao J., Zhou J., Suo Q., and Zhang A.. 2018. Risk prediction on electronic health records with prior medical knowledge. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1910–1919. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Malik K. M., Krishnamurthy M., Alobaidi M., Hussain M., Alam F., and Malik G.. 2020. Automated domain-specific healthcare knowledge graph curation framework: Subarachnoid hemorrhage as phenotype. Expert Systems with Applications 145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Masi I., Trân A. T., Hassner T., Leksut J. T., and Medioni G.. 2016. Do we really need to collect millions of faces for effective face recognition? Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9909 LNCS 579596. Google ScholarGoogle ScholarCross RefCross Ref
  68. Meng F., Liu H., Liang Y., Tu J., and Liu M.. 2019. Sample fusion network: An end-to-end data augmentation network for skeleton-based human action recognition. IEEE Transactions on Image Processing 28, 11 (2019), 52815295. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Mikołajczyk A. and Grochowski M.. 2018. Data augmentation for improving deep learning in image classification problem. 2018 International Interdisciplinary PhD Workshop (IIPhDW). 117122.Google ScholarGoogle ScholarCross RefCross Ref
  70. Moreno-Barea F. J., Strazzera F., Jerez J. M., Urda D., and Franco L.. 2019. Forward noise adjustment scheme for data augmentation. Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018. 728734. Google ScholarGoogle ScholarCross RefCross Ref
  71. Mushtaq Z., Su S. F., and Tran Q. V.. 2021. Spectral images based environmental sound classification using CNN with meaningful data augmentation. Applied Acoustics 172, 107581. Google ScholarGoogle ScholarCross RefCross Ref
  72. Nam J., Fu W., Kim S., Menzies T., and Tan L.. 2018. Heterogeneous defect prediction. IEEE Transactions on Software Engineering 44, 9 (2018), 874896. Google ScholarGoogle ScholarCross RefCross Ref
  73. Neyshabur B., Bhojanapalli S., Mcallester D., and Srebro N. (n.d.). Exploring Generalization in Deep Learning.Google ScholarGoogle Scholar
  74. Olowookere T. A. and Adewale O. S.. 2020. A framework for detecting credit card fraud with cost-sensitive meta-learning ensemble approach. Scientific African 8. Google ScholarGoogle ScholarCross RefCross Ref
  75. Oquab M., Bottou L., Laptev I., and Sivic J.. 2014. Learning and transferring mid-level image representations using convolutional neural networks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 17171724. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Ornek A. H. and Ceylan M.. 2019. Comparison of traditional transformations for data augmentation in deep learning of medical thermography. 2019 42nd International Conference on Telecommunications and Signal Processing, TSP 2019, 191194. Google ScholarGoogle ScholarCross RefCross Ref
  77. Palatucci M., Pomerleau D., Hinton G., and Mitchell T. M. (n.d.). Zero-Shot Learning with Semantic Output Codes.Google ScholarGoogle Scholar
  78. Pan S. J., Tsang I. W., Kwok J. T., and Yang Q.. 2011. Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks 22, 2 (2011), 199210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Pan S. J. and Yang Q.. 2010. A survey on transfer learning. In IEEE Transactions on Knowledge and Data Engineering 22, 10 (2010), 13451359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Pan X.. 2021. Do 2D GANs Know 3D Shape? Unsupervised 3D. 118.Google ScholarGoogle Scholar
  81. Pandey S., Singh P. R., and Tian J.. 2020. An image augmentation approach using two-stage generative adversarial network for nuclei image segmentation. Biomedical Signal Processing and Control 57. Google ScholarGoogle ScholarCross RefCross Ref
  82. Perez L. and Wang J.. 2017. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. http://arxiv.org/abs/1712.04621.Google ScholarGoogle Scholar
  83. Prettenhofer P. and Stein B.. 2010. Cross-Language Text Classification using Structural Correspondence Learning. Association for Computational Linguistics.Google ScholarGoogle Scholar
  84. Qian Y., Hu H., and Tan T.. 2019. Data augmentation using generative adversarial networks for robust speech recognition. Speech Communication 114, 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Ratner A. J., Ehrenberg H. R., Hussain Z., Dunnmon J., and Ré C. (n.d.). Learning to Compose Domain-Specific Transformations for Data Augmentation.Google ScholarGoogle Scholar
  86. Sajjad M., Khan S., Muhammad K., Wu W., Ullah A., and Baik S. W.. 2019. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. Journal of Computational Science 30, 174182. Google ScholarGoogle ScholarCross RefCross Ref
  87. Salimans T., Goodfellow I., Zaremba W., Cheung V., Radford A., and Chen X.. (n.d.). Improved Techniques for Training GANs. https://github.com/openai/improved-gan.Google ScholarGoogle Scholar
  88. Salman S. and Liu X.. 2019. Overfitting Mechanism and Avoidance in Deep Neural Networks. http://arxiv.org/abs/1901.06566.Google ScholarGoogle Scholar
  89. Seah C. W., Ong Y. S., and Tsang I. W.. 2013. Combating negative transfer from predictive distribution differences. IEEE Transactions on Cybernetics 43, 4 (2013), 11531165. Google ScholarGoogle ScholarCross RefCross Ref
  90. Sezer O. B., Gudelek M. U., and Ozbayoglu A. M.. 2020. Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied Soft Computing Journal 90. Google ScholarGoogle ScholarCross RefCross Ref
  91. Shakeel M. H., Karim A., and Khan I.. 2020. A multi-cascaded model with data augmentation for enhanced paraphrase detection in short texts. Information Processing and Management 57, 3 (2020). Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Shao L., Zhu F., and Li X.. 2015. Transfer learning for visual categorization: A survey. IEEE Transactions on Neural Networks and Learning Systems 26, 5 (2015), 10191034. Google ScholarGoogle Scholar
  93. Shi X., Fan W., and Ren J. (n.d.). LNAI 5212 - Actively Transfer Domain Knowledge.Google ScholarGoogle Scholar
  94. Shijie J. and Ping W. (n.d.). Research on Data Augmentation for Image Classification Based on Convolution Neural Networks. 201602118.Google ScholarGoogle Scholar
  95. Shorten C. and Khoshgoftaar T. M.. 2019. A survey on image data augmentation for deep learning. Journal of Big Data 6, 1 (2019). Google ScholarGoogle ScholarCross RefCross Ref
  96. Srivastava N., Hinton G., Krizhevsky A., and Salakhutdinov R.. 2014. Dropout: A simple way to prevent neural networks from overfitting. In Journal of Machine Learning Research (15).Google ScholarGoogle Scholar
  97. Sultani W. and Shah M.. 2021. Human action recognition in drone videos using a few aerial training examples. Computer Vision and Image Understanding 206 (2020). Google ScholarGoogle ScholarCross RefCross Ref
  98. Summers C. and Dinneen M. J.. 2019. Improved mixed-example data augmentation. Proceedings - 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019, 12621270. Google ScholarGoogle ScholarCross RefCross Ref
  99. Sun C., Shrivastava A., Singh S., and Gupta A.. 2017. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. Google ScholarGoogle ScholarCross RefCross Ref
  100. Szegedy C., Zaremba W., Sutskever I., Bruna J., Erhan D., Goodfellow I., and Fergus R.. 2013. Intriguing Properties of Neural Networks. http://arxiv.org/abs/1312.6199.Google ScholarGoogle Scholar
  101. Takahashi R., Matsubara T., and Uehara K.. 2019. Data augmentation using random image cropping and patching for deep CNNs. IEEE Transactions on Circuits and Systems for Video Technology. 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Taylor L. and Nitschke G.. 2019. Improving deep learning with generic data augmentation. Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018, 15421547. Google ScholarGoogle ScholarCross RefCross Ref
  103. Tommasi T., Orabona F., and Caputo B.. 2010. Safety in numbers: Learning categories from few examples with multi model knowledge transfer. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 30813088. Google ScholarGoogle ScholarCross RefCross Ref
  104. Waheed A., Goyal M., Gupta D., Khanna A., Al-Turjman F., and Pinheiro P. R.. 2020. CovidGAN: Data augmentation using auxiliary classifier GAN for improved Covid-19 detection. IEEE Access 8, 9191691923. Google ScholarGoogle ScholarCross RefCross Ref
  105. Wang P., Li S., Ye F., Wang Z., and Zhang M.. 2020. PacketCGAN: Exploratory study of class imbalance for encrypted traffic classification using CGAN. IEEE International Conference on Communications, 2020-June. Google ScholarGoogle ScholarCross RefCross Ref
  106. Wang X., Wang K., and Lian S.. 2020. A survey on face data augmentation for the training of deep neural networks. In Neural Computing and Applications. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Wang X., Zhao Y., and Pourpanah F.. 2020. Recent advances in deep learning. In International Journal of Machine Learning and Cybernetics 11, 4 (2020), 747750. Springer. Google ScholarGoogle ScholarCross RefCross Ref
  108. Wang Y., Wei X., Tang X., Shen H., and Ding L.. 2020. CNN Tracking Based on Data Augmentation ✩. 194, 105594. Google ScholarGoogle ScholarCross RefCross Ref
  109. Wang Y., Huang G., Song S., Pan X., Xia Y., and Wu C.. 2021. Regularizing deep networks with semantic data augmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 8828(c). Google ScholarGoogle ScholarCross RefCross Ref
  110. Weiss K., Khoshgoftaar T. M., and Wang D. D.. 2016. A survey of transfer learning. Journal of Big Data 3, 1 (2016). Google ScholarGoogle ScholarCross RefCross Ref
  111. Wu R.. 2014. Deep Image: Scaling up Image Recognition.Google ScholarGoogle Scholar
  112. Xia R., Zong C., Hu X., Cambria E., Jiang J., and Zhai C.. 2013. Feature Ensemble Plus Sample Selection: Domain Adaptation for Sentiment Classification. www.computer.org/intelligent.Google ScholarGoogle Scholar
  113. Yao Y. and Doretto G.. 2010. Boosting for transfer learning with multiple sources. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 18551862. Google ScholarGoogle ScholarCross RefCross Ref
  114. Zaj M., Zołna K., Rostamzadeh N., and Pinheiro P. O. (n.d.). Adversarial Framing for Image and Video Classification. www.aaai.org.Google ScholarGoogle Scholar
  115. Zajac M., Zołna K., Rostamzadeh N., and Pinheiro P. O.. 2019. Adversarial framing for image and video classification. Proceedings of the AAAI Conference on Artificial Intelligence 33, 1007710078. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Zhang J., Liu Y., Luan H., Xu J., and Sun M. (n.d.). Prior Knowledge Integration for Neural Machine Translation using Posterior Regularization.Google ScholarGoogle Scholar
  117. Zhang X., Wang Q., Huawei H., Zhang J., and Zhong Z. (n.d.). Adversarial Autoaugment.Google ScholarGoogle Scholar
  118. Zhao F., Sun H., Jin L., and Jin H.. 2020. Structure-augmented knowledge graph embedding for sparse data with rule learning. Computer Communications 159, 271278. Google ScholarGoogle ScholarCross RefCross Ref
  119. Zhong Z., Zheng L., Kang G., Li S., and Yang Y. (n.d.). Random Erasing Data Augmentation. https://github.com/zhunzhong07/Random-Erasing.Google ScholarGoogle Scholar
  120. Zhou J. T., Pan S. J., Tsang I. W., and Yan Y. (n.d.). Hybrid Heterogeneous Transfer Learning through Deep Learning. www.aaai.org.Google ScholarGoogle Scholar
  121. Zhu Y., Chen Y., Lu Z., Pan S. J., Xue G.-R., Yu Y., Yang Q., and Kong H. (n.d.). Heterogeneous Transfer Learning for Image Classification. www.aaai.org.Google ScholarGoogle Scholar
  122. Zhu Z., Huang T., Xu M., Shi B., Cheng W., and Bai X.. 2021. Progressive and Aligned Pose Attention Transfer for Person Image Generation. 115. http://arxiv.org/abs/2103.11622.Google ScholarGoogle Scholar
  123. Zoph B., Ghiasi G., Lin T., Shlens J., and Le Q. V. (n.d.). Learning Data Augmentation Strategies for Object Detection.Google ScholarGoogle Scholar

Index Terms

  1. A Systematic Review on Data Scarcity Problem in Deep Learning: Solution and Applications

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 54, Issue 10s
          January 2022
          831 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3551649
          Issue’s Table of Contents

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 13 September 2022
          • Online AM: 6 January 2022
          • Accepted: 22 November 2021
          • Revised: 21 July 2021
          • Received: 2 September 2020
          Published in csur Volume 54, Issue 10s

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • survey
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        View Full Text

        HTML Format

        View this article in HTML Format .

        View HTML Format