skip to main content
research-article

StrokeStyles: Stroke-based Segmentation and Stylization of Fonts

Published:28 April 2022Publication History
Skip Abstract Section

Abstract

We develop a method to automatically segment a font’s glyphs into a set of overlapping and intersecting strokes with the aim of generating artistic stylizations. The segmentation method relies on a geometric analysis of the glyph’s outline, its interior, and the surrounding areas and is grounded in perceptually informed principles and measures. Our method does not require training data or templates and applies to glyphs in a large variety of input languages, writing systems, and styles. It uses the medial axis, curvilinear shape features that specify convex and concave outline parts, links that connect concavities, and seven junction types. We show that the resulting decomposition in strokes can be used to create variations, stylizations, and animations in different artistic or design-oriented styles while remaining recognizably similar to the input font.

Skip Supplemental Material Section

Supplemental Material

REFERENCES

  1. Arias-Castro Ery, Lerman Gilad, and Zhang Teng. 2017. Spectral clustering based on local PCA. J. Mach. Learn. Res. 18, 1 (2017), 253309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arte Anssi. 2015. Forms of Rockin’: Graffiti Letters and Popular Culture. Dokument Press.Google ScholarGoogle Scholar
  3. August Jonas, Siddiqi Kaleem, and Zucker Steven W.. 1999. Ligature instabilities in the perceptual organization of shape. Comput. Vis. Image Understand. 76, 3 (1999), 231243. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Azadi Samaneh, Fisher Matthew, Kim Vladimir G., Wang Zhaowen, Shechtman Eli, and Darrell Trevor. 2018. Multi-content GAN for few-shot font style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 75647573. Google ScholarGoogle ScholarCross RefCross Ref
  5. Bailey Alex. 2001. Class-dependent Features and Multicategory Classification. Ph. D. Dissertation. Southampton University.Google ScholarGoogle Scholar
  6. Balashova Elena, Bermano Amit H., Kim Vladimir G., DiVerdi Stephen, Hertzmann Aaron, and Funkhouser Thomas. 2019. Learning a stroke-based representation for fonts. Comput. Graph. Forum 38, 1 (2019), 429442. Google ScholarGoogle ScholarCross RefCross Ref
  7. Barber Brad and Huhdanpaa H.. 1995. QHull. The Geometry Center, University of Minnesota.Google ScholarGoogle Scholar
  8. Belyaev Alexander and Yoshizawa Shin. 2001. On evolute cusps and skeleton bifurcations. In Proceedings of the International Conference on Shape Modeling and Applications. IEEE, 134140. Google ScholarGoogle ScholarCross RefCross Ref
  9. Berio Daniel, Asente Paul, Echevarria Jose, and Leymarie Frederic Fol. 2019. Sketching and layering graffiti primitives. In Proceedings of the 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering. 5159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Berio Daniel, Calinon Sylvain, and Leymarie Frederic Fol. 2017. Dynamic graffiti stylisation with stochastic optimal control. In Proceedings of the 4th International Conference on Movement Computing. Association for Computing Machinery. Article no. 18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Berio Daniel, Leymarie Frederic Fol, and Plamondon Réjean. 2018. Expressive curve editing with the sigma lognormal model. In Proceedings of the 39th Annual European Association for Computer Graphics Conference: Short Papers. Eurographics Association, 3336.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Berio Daniel, Leymarie Frederic Fol, and Plamondon Réjean. 2020. Kinematics reconstruction of static calligraphic traces from curvilinear shape features. In Proceedings of the Lognormality Principle and its Applications in e-Security, e-Learning and e-Health, Plamondon Réjean, Marcelli Angelo, and Ferrer Miguel Ángel (Eds.). Series in Machine Perception and Artificial Intelligence, Vol. 88. Chapter 11, 237268. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  13. Blum Harry. 1973. Biological shape and visual science (part I). J. Theor. Biol. 38, 2 (1973), 205287. Google ScholarGoogle ScholarCross RefCross Ref
  14. Brooks Joseph L.. 2015. Traditional and new principles of perceptual grouping. In The Oxford Handbook of Perceptual Organization, Johan Wagemans (Ed.). Oxford University Press, 5787.Google ScholarGoogle Scholar
  15. Campbell Neill D. F. and Kautz Jan. 2014. Learning a manifold of fonts. ACM Trans. Graph. 33, 4 (2014). Article no. 91.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Chen Xudong, Lian Zhouhui, Tang Yingmin, and Xiao Jianguo. 2017. An automatic stroke extraction method using manifold learning. In Proceedings of the European Association for Computer Graphics: Short Papers (EG’17). Eurographics Association, 6568. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Cox Charles H., Coueignoux Philippe, Blesser Barry, and Eden Murray. 1982. Skeletons: A link between theoretical and physical letter descriptions. Pattern Recogn. 15, 1 (1982), 1122. Google ScholarGoogle ScholarCross RefCross Ref
  18. Craveiro Rodrigo Pena Carvalho Dos Anjos. 2017. The influence of graffiti writing in contemporary typography. Street Art Urban Creativ. Sci. J. 3, 2 (2017), 6583. Google ScholarGoogle ScholarCross RefCross Ref
  19. Winter Joeri De and Wagemans Johan. 2006. Segmentation of object outlines into parts: A large-scale integrative study. Cognition 99, 3 (2006), 275325. Google ScholarGoogle ScholarCross RefCross Ref
  20. Deussen Oliver, Lindemeier Thomas, Pirk Sören, and Tautzenberger Mark. 2012. Feedback-guided stroke placement for a painting machine. In Proceedings of the 8th Annual Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging. Eurographics Association, 2533.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Deutsch Shay and Medioni Gérard. 2017. Learning the geometric structure of manifolds with singularities using the tensor voting graph. J. Math. Imag. Vis. 57, 3 (2017), 402422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Deza Michel Marie and Deza Elena. 2013. Encyclopedia of Distances. Springer. Google ScholarGoogle ScholarCross RefCross Ref
  23. Dwyer Tim, Hurst Nathan, and Merrick Damian. 2008. A fast and simple heuristic for metro map path simplification. In Proceedings of the International Symposium on Visual Computing. Springer, 2230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ernst Udo A., Mandon Sunita, Schinkel–Bielefeld Nadja, Neitzel Simon D., Kreiter Andreas K., and Pawelzik Klaus R.. 2012. Optimality of human contour integration. PLOS Comput. Biol. 8, 5 (2012), 117. Google ScholarGoogle ScholarCross RefCross Ref
  25. Fabri Andreas and Pion Sylvain. 2009. CGAL: The computational geometry algorithms library. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’09). 538539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Faure Alexandre, Buzer Lilian, and Feschet Fabien. 2009. Tangential cover for thick digital curves. Pattern Recogn. 42, 10 (2009), 22792287. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Favreau Jean-Dominique, Lafarge Florent, and Bousseau Adrien. 2016. Fidelity vs. simplicity: A global approach to line drawing vectorization. ACM Trans. Graph. 35, 4 (2016). Article no. 120.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Froyen Vicky, Feldman Jacob, and Singh Manish. 2015. Bayesian hierarchical grouping: Perceptual grouping as mixture estimation. Psychol. Rev. 122, 4 (2015), 575597. Google ScholarGoogle ScholarCross RefCross Ref
  29. Fu Hongbo, Zhou Shizhe, Liu Ligang, and Mitra Niloy J. 2011. Animated construction of line drawings. In ACM Trans. Graph. 30 (2011). 110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Galar Mikel, Fernández Alberto, Barrenechea Edurne, Bustince Humberto, and Herrera Francisco. 2011. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44, 8 (2011), 17611776. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ghys Étienne, Tabachnikov Sergei, and Timorin Vladlen. 2013. Osculating curves: Around the tait-kneser theorem. Math. Intell. 35, 1 (2013), 6166. Google ScholarGoogle ScholarCross RefCross Ref
  32. Giblin Peter J. and Kimia Benjamin B.. 2003. On the local form and transitions of symmetry sets, medial axes, and shocks. Int. J. Comput. Vis. 54, 1 (Aug. 2003), 143157. Google ScholarGoogle ScholarCross RefCross Ref
  33. Gingold Yotam, Salesin David, and Zorin Denis. 2008. Stroke-by-Stroke Glyph Animation. Technical Report. Creativity and Graphics Lab (CraGL) at George Mason University, Fairfax, Virginia.Google ScholarGoogle Scholar
  34. Goldberg Andrew, Zhu Xiaojin, Singh Aarti, Xu Zhiting, and Nowak Robert. 2009. Multi-manifold semi-supervised learning. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, David van Dyk and Max Welling (Eds.), Vol. 5. PMLR, 169176. https://proceedings.mlr.press/v5/goldberg09a.html.Google ScholarGoogle Scholar
  35. Ha David and Eck Douglas. 2018. A neural representation of sketch drawings. In Proceedings o f the 6th International Conference on Learning Representations (ICLR’18).Google ScholarGoogle Scholar
  36. Haines Tom S. F., Aodha Oisin Mac, and Brostow Gabriel J.. 2016. My text in your handwriting. ACM Trans. Graph. 35, 3 (2016). Article no. 26.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Heller Katherine A. and Ghahramani Zoubin. 2005. Bayesian hierarchical clustering. In Proceedings of the 22nd International Conference on Machine learning (ICML’05). ACM, 297304. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Herz Jacky, Hersch Roger D., and Gonczarowski Jakob. 1997. Coherent processing of character skeletal forms. Comput. Graph. 21, 6 (1997), 727736. Google ScholarGoogle ScholarCross RefCross Ref
  39. Hoffman Donald D. and Richards Whitman A.. 1984. Parts of recognition. Cognition 18, 1-3 (1984), 6596. Google ScholarGoogle ScholarCross RefCross Ref
  40. Hoffman Donald D. and Singh Manish. 1997. Salience of visual parts. Cognition 63, 1 (1997), 2978. Google ScholarGoogle ScholarCross RefCross Ref
  41. Hofstadter Douglas R.. 1982. Variations on a theme as the essence of imagination. Sci. Am. 247, 4 (1982), 1421.Google ScholarGoogle ScholarCross RefCross Ref
  42. Hsu Siu Chi and Lee Irene H. H.. 1994. Drawing and animation using skeletal strokes. In Proceedings of the21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’94), 109118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Hsu S. C., Lee I. H. H., and Wiseman N. E.. 1993. Skeletal strokes. In Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology (UIST’93). 197206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Hu Changyuan and Hersch Roger D.. 2001. Parameterizable fonts based on shape components. IEEE Comput. Graph. Appl. 21, 3 (2001), 7085. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Jakubiak Elena J., Perry Ronald N., and Frisken Sarah F.. 2006. An improved representation for stroke-based fonts. In ACM SIGGRAPH 2006 Sketches. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Jiang Tingting, Dong Zhongqian, Ma Chang, and Wang Yizhou. 2013. Toward perception-based shape decomposition. In Proceedings of the Asia Conference onComputer Vision (ACCV’12). Lecture Notes in Computer Science, Vol. LNCS 7725. Springer, 188201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Kachanov Mark, Shafiro Boris, and Tsukrov Igor. 2003. Handbook of Elasticity Solutions. Springer Netherlands. Google ScholarGoogle ScholarCross RefCross Ref
  48. Karow Peter. 1994. Digital Typefaces: Description and Formats. Springer. Google ScholarGoogle ScholarCross RefCross Ref
  49. Kim Byungsoo, Wang Oliver, Öztireli A Cengiz, and Gross Markus. 2018. Semantic segmentation for line drawing vectorization using neural networks. Comput. Graph. Forum 37, 2 (2018), 329338. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  50. Kishore Shaunak. 2018. Make Me a Hanzi Dataset. Retrieved from https://github.com/skishore/makemeahanzi.Google ScholarGoogle Scholar
  51. Knuth Donald E.. 1979. Mathematical typography. Bull. Am. Math. Soc. 1, 2 (1979), 337373. Google ScholarGoogle ScholarCross RefCross Ref
  52. Kotani Atsunobu, Tellex Stefanie, and Tompkin James. 2020. Generating handwriting via decoupled style descriptors. In Proceedings of the European Conference on Computer Vision (ECCV’20). 764780.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Lake Brenden M., Salakhutdinov Ruslan, and Tenenbaum Joshua B.. 2015. Human-level concept learning through probabilistic program induction. Science 350, 6266 (2015), 13321338. Google ScholarGoogle ScholarCross RefCross Ref
  54. Lamiroy Bart, Bouville Thomas, Blégean Julien, Cao Hongliu, Ghamizi Salah, Houpin Romain, and Lloyd Matthias. 2015. Re-typograph phase I: A proof-of-concept for typeface parameter extraction from historical documents. In Document Recognition and Retrieval XXII, Ringger Eric K. and Lamiroy Bart (Eds.), Vol. 9402. International Society for Optics and Photonics, SPIE, 8091. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  55. Latecki Longin Jan and Lakämper Rolf. 1998. Discrete approach to curve evolution. In Mustererkennung 1998. Springer, 8592. Google ScholarGoogle ScholarCross RefCross Ref
  56. Levien R. L.. 2009. From Spiral to Spline: Optimal Techniques in Interactive Curve Design. Ph.D. Dissertation. EECS Department, University of California, Berkeley.Google ScholarGoogle Scholar
  57. Leyton Michael. 1987. Symmetry-curvature duality. Comput. Vis. Graph. Image Process. 38, 3 (1987), 327341. Google ScholarGoogle ScholarCross RefCross Ref
  58. Leyton Michael. 1988. A process-grammar for shape. Artif. Intell. 34, 2 (March 1988), 213247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Luo Lei, Shen Chunhua, Liu Xinwang, and Zhang Chunyuan. 2015. A computational model of the short-cut rule for 2D shape decomposition. IEEE Trans. Image Process. 24, 1 (2015), 273283. Google ScholarGoogle ScholarCross RefCross Ref
  60. Macrini Diego, Dickinson Sven, Fleet David, and Siddiqi Kaleem. 2011. Bone graphs: Medial shape parsing and abstraction. Comput. Vis. Image Understand. 115, 7 (July 2011), 10441061. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Macrini Diego, Siddiqi Kaleem, and Dickinson Sven. 2008. From skeletons to bone graphs: Medial abstraction for object recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08). Google ScholarGoogle ScholarCross RefCross Ref
  62. Mi Xiaofeng and DeCarlo Doug. 2007. Separating parts from 2D shapes using relatability. In Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV’07). Google ScholarGoogle ScholarCross RefCross Ref
  63. Nöllenburg Martin. 2014. A survey on automated metro map layout methods. In Proceedings of the 1st Schematic Mapping Workshop. University of Essex, UK.Google ScholarGoogle Scholar
  64. Noordzij Gerrit. 2005. The Stroke—Theory of Writing. Hyphen Press. Translated from the Dutch original of 1985 by Peter Enneson.Google ScholarGoogle Scholar
  65. Ogniewicz Robert L. and Ilg Markus. 1992. Voronoi skeletons: Theory and applications. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’92). 6369. Google ScholarGoogle ScholarCross RefCross Ref
  66. Papanelopoulos Nikos, Avrithis Yannis, and Kollias Stefanos. 2019. Revisiting the medial axis for planar shape decomposition. Comput. Vis. Image Understand. 179 (2019), 6678. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Parent Pierre and Zucker Steven W.. 1989. Trace inference, curvature consistency, and curve detection. IEEE Trans. Pattern Anal. Mach. Intell. 11, 8 (1989), 823839. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Phan Huy Quoc, Fu Hongbo, and Chan Antoni B. 2015. Flexyfont: Learning transferring rules for flexible typeface synthesis. In Computer Graphics Forum, Vol. 34. 245256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Plamondon R. and Srihari S. N.. 2000. Online and off-line handwriting recognition: A comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1 (2000), 6384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Preparata Franco P. and Shamos Michael Ian. 1985. Intersections. 266322. Google ScholarGoogle ScholarCross RefCross Ref
  71. Seah Hock Soon, Wu Zhongke, Tian Feng, Xiao Xian, and Xie Boya. 2005. Artistic brushstroke representation and animation with disk B-spline curve. In Proceedings of the ACM SIGCHI International Conference on Advances in Computer Entertainment Technology. 8893. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Shaked Doron and Bruckstein Alfred M. 1998. Pruning medial axes. Comput. Vis. Image Understand. 69, 2 (1998), 156169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Shamir Ariel. 2003. Constraint-based approach for automatic hinting of digital typefaces. ACM Trans. Graph. 22, 2 (2003), 131151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Shamir Ariel and Rappoport Ari. 1996. Extraction of typographic elements from outline representations of fonts. Comput. Graph. Forum 15, 3 (1996), 259268. Google ScholarGoogle ScholarCross RefCross Ref
  75. Siddiqi Kaleem and Kimia Benjamin B.. 1995. Parts of visual form: Computational aspects. IEEE Trans. Pattern Anal. Mach. Intell. 17, 3 (1995), 239251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Singh Manish and Hoffman Donald D.. 2001. Part-based representations of visual shape and implications for visual cognition. In Advances in Psychology. Vol. 130. 401459. Google ScholarGoogle ScholarCross RefCross Ref
  77. Singh Manish, Seyranian Gregory D., and Hoffman Donald D.. 1999. Parsing silhouettes: The short-cut rule. Percept. Psychophys. 61, 4 (1999), 636660. Google ScholarGoogle ScholarCross RefCross Ref
  78. Spröte Patrick, Schmidt Filipp, and Fleming Roland W.. 2016. Visual perception of shape altered by inferred causal history. Sci. Rep. 6, 36245 (2016). Google ScholarGoogle ScholarCross RefCross Ref
  79. Sun Yuandong, Qian Huihuan, and Xu Yangsheng. 2014. A geometric approach to stroke extraction for the chinese calligraphy robot. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’14). 32073212. Google ScholarGoogle ScholarCross RefCross Ref
  80. Suveeranont Rapee and Igarashi Takeo. 2010. Example-based automatic font generation. In Smart Graphics. Lecture Notes in Computer Science, Vol. 6133. 127138. Google ScholarGoogle ScholarCross RefCross Ref
  81. Tang Fan, Dong Weiming, Meng Yiping, Mei Xing, Huang Feiyue, Zhang Xiaopeng, and Deussen Oliver. 2017. Animated construction of chinese brush paintings. IEEE Trans. Vis. Comput. Graph. 24, 12 (2017), 30193031. Google ScholarGoogle ScholarCross RefCross Ref
  82. Timoshenko S. P. and Goodier J. N.. 1951. Theory of Elasticity. McGraw–Hill. Google ScholarGoogle Scholar
  83. Wagemans Johan. 2018. Perceptual organization. In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, Sensation, Perception, and Attention. Vol. 2. Chapter 18, 803872. 4th Edition.Google ScholarGoogle ScholarCross RefCross Ref
  84. Wagemans Johan, Doorn Andrea J. van, and Koenderink Jan J.. 2011. Measuring 3D point configurations in pictorial space. i-Perception 2, 1 (2011), 77111. Google ScholarGoogle ScholarCross RefCross Ref
  85. Wang Jue, Wu Chenyu, Xu Ying-Qing, Shum Heung-Yeung, and Ji Liang. 2002. Learning-based cursive handwriting synthesis. In Proceedings of the 8th IEEE International Workshop on Frontiers in Handwriting Recognition. 157162. Google ScholarGoogle ScholarCross RefCross Ref
  86. Wang Yue. 2013. Interview with Charles Bigelow. TUGboat 34, 2 (2013), 136167.Google ScholarGoogle Scholar
  87. Westin Carl-Fredrik, Maier Stephan E, Mamata Hatsuho, Nabavi Arya, Jolesz Ferenc A, and Kikinis Ron. 2002. Processing and visualization for diffusion tensor MRI. Med. Image Anal. 6, 2 (2002), 93108. Google ScholarGoogle ScholarCross RefCross Ref
  88. Williams Lance and Thornber Karvel K.. 2001. Orientation, scale, and discontinuity as emergent properties of illusory contour shape. Neural Comput. 13, 8 (August 2001), 16831711. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Xu Songhua, Jiang Hao, Lau Francis C. M., and Pan Yunhe. 2012. Computationally evaluating and reproducing the beauty of chinese calligraphy. IEEE Intell. Syst.3 (2012), 6372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Xu Yaoda and Singh Manish. 2002. Early computation of part structure: Evidence from visual search. Percept. Psychophys. 64, 7 (2002), 10391054. Google ScholarGoogle ScholarCross RefCross Ref
  91. Yen Shih Cheng and Finkel Leif H.. 1998. Extraction of perceptually salient contours by striate cortical networks. Vis. Res. 38, 5 (1998), 719741. Google ScholarGoogle ScholarCross RefCross Ref
  92. Zhang Junsong, Wang Yu, Xiao Weiyi, and Luo Zhenshan. 2017. Synthesizing ornamental typefaces. Comput. Graph. Forum 36, 1 (2017), 6475. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Zhao Zhiyuan and Saalfeld Alan. 1997. Linear-time sleeve-fitting polyline simplification algorithms. In Proceedings of the 13th AutoCarto Symposium, Vol. 13. 214–223. https://cartogis.orgGoogle ScholarGoogle Scholar
  94. Zou Changqing, Cao Junjie, Ranaweera Warunika, Alhashim Ibraheem, Tan Ping, Sheffer Alla, and Zhang Hao. 2016. Legible compact calligrams. ACM Trans. Graph. 35, 4, Article 122 (2016), 12 pages. Article no. 122.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. StrokeStyles: Stroke-based Segmentation and Stylization of Fonts

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 41, Issue 3
        June 2022
        213 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3517033
        Issue’s Table of Contents

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 28 April 2022
        • Accepted: 1 December 2021
        • Revised: 1 September 2021
        • Received: 1 May 2020
        Published in tog Volume 41, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      View Full Text

      HTML Format

      View this article in HTML Format .

      View HTML Format