skip to main content
10.1145/3505284.3529973acmconferencesArticle/Chapter ViewAbstractPublication PagesimxConference Proceedingsconference-collections
research-article

Heart Rate Variability for Non-Intrusive Cybersickness Detection

Published:22 June 2022Publication History

ABSTRACT

Cybersickness involves all the adverse effects that can occur during a Virtual Reality (VR) immersion, which can compromise the quality of the user experience and limit the usability, functionality and duration of use of VR systems. Standardised protocols help detect stimuli that may cause cybersickness in multiple users but do not fully discriminate which specific users experience cybersickness. Of the biometric measures used to monitor cybersickness in an individual, Heart Rate Variability (HRV) is one of the most used in previous work. However, these only considered its temporal components and did not allow for rest periods between sessions, even though these can affect users’ immersion. Our analysis addresses these limitations in that changes in HRV can measure specific levels of discomfort or ”alertness” associated with the initial cybersickness stimulus induced in the 360 videos. Primarily, our empirical results show significant differences in the frequency components of HRV in response to cybersickness stimuli. These initial measurements can compete with standard subjective assessment protocols, especially for detecting whether a subject responds to a VR immersion with cybersickness symptoms.

References

  1. Rhenan Bartels and Tiago Peçanha. 2020. HRV: A Pythonic package for heart rate variability analysis. Journal of Open Source Software 5, 51 (2020), 1867.Google ScholarGoogle ScholarCross RefCross Ref
  2. Jelte E. Bos, Willem Bles, and Eric L. Groen. 2008. A theory on visually induced motion sickness. Displays 29, 2 (March 2008), 47–57. https://doi.org/10.1016/j.displa.2007.09.002Google ScholarGoogle ScholarCross RefCross Ref
  3. Glauber Sá Brandão, Antônia Adonis Callou Sampaio, Glaudson Sá Brandão, Jéssica Julioti Urbano, Nina Teixeira Fonsêca, Nadua Apostólico, Ezequiel Fernandes De Oliveira, Eduardo De Araujo Perez, Rafael Da Guia Almeida, Ismael Sousa Dias, Israel Reis Santos, Sergio Roberto Nacif, and Luis Vicente Franco Oliveira. 2014. Analysis of heart rate variability in the measurement of the activity of the autonomic nervous system: technical note.Manual Therapy, Posturology & Rehabilitation Journal 12 (Oct. 2014), 197. https://doi.org/10.17784/mtprehabjournal.2014.12.197Google ScholarGoogle Scholar
  4. Susan Bruck and Paul A. Watters. 2009. Estimating Cybersickness of Simulated Motion Using the Simulator Sickness Questionnaire (SSQ): A Controlled Study. In 2009 Sixth International Conference on Computer Graphics, Imaging and Visualization. IEEE, Tianjin, China, 486–488. https://doi.org/10.1109/CGIV.2009.83Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Susan Bruck and Paul A. Watters. 2011. The factor structure of cybersickness. Displays 32, 4 (Oct. 2011), 153–158. https://doi.org/10.1016/j.displa.2011.07.002Google ScholarGoogle ScholarCross RefCross Ref
  6. Francisco Maria Calisto, Carlos Santiago, Nuno Nunes, and Jacinto C Nascimento. 2021. Introduction of human-centric AI assistant to aid radiologists for multimodal breast image classification. International Journal of Human-Computer Studies 150 (2021), 102607.Google ScholarGoogle ScholarCross RefCross Ref
  7. Yekta Said Can, Niaz Chalabianloo, Deniz Ekiz, Javier Fernandez-Alvarez, Claudia Repetto, Giuseppe Riva, Heather Iles-Smith, and Cem Ersoy. 2020. Real-life stress level monitoring using smart bands in the light of contextual information. IEEE Sensors Journal 20, 15 (2020), 8721–8730.Google ScholarGoogle ScholarCross RefCross Ref
  8. Carlos Carreiras, Ana Priscila Alves, André Lourenço, Filipe Canento, Hugo Silva, Ana Fred, 2015–. BioSPPy: Biosignal Processing in Python. https://github.com/PIA-Group/BioSPPy/Google ScholarGoogle Scholar
  9. Jacob Cohen. 2013. Statistical Power Analysis for the Behavioral Sciences. Routledge, New York.Google ScholarGoogle Scholar
  10. Joséphine Cool and Dana Zappetti. 2019. The Physiology of Stress. In Medical Student Well-Being, Dana Zappetti and Jonathan D. Avery (Eds.). Springer International Publishing, Cham, 1–15. https://doi.org/10.1007/978-3-030-16558-1_1Google ScholarGoogle Scholar
  11. Ralph D’Agostino and E. S. Pearson. 1973. Tests for Departure from Normality. Empirical Results for the Distributions of b2 and Math 1. Biometrika 60, 3 (Dec. 1973), 613. https://doi.org/10.2307/2335012Google ScholarGoogle Scholar
  12. Mark S. Dennison, A. Zachary Wisti, and Michael D’Zmura. 2016. Use of physiological signals to predict cybersickness. Displays 44 (Sept. 2016), 42–52. https://doi.org/10.1016/j.displa.2016.07.002Google ScholarGoogle Scholar
  13. Adina E. Draghici and J. Andrew Taylor. 2016. The physiological basis and measurement of heart rate variability in humans. Journal of Physiological Anthropology 35, 1 (Dec. 2016), 22. https://doi.org/10.1186/s40101-016-0113-7Google ScholarGoogle ScholarCross RefCross Ref
  14. Ulrich Engelke, Daniel P Darcy, Grant H Mulliken, Sebastian Bosse, Maria G Martini, Sebastian Arndt, Jan-Niklas Antons, Kit Yan Chan, Naeem Ramzan, and Kjell Brunnström. 2016. Psychophysiology-based QoE assessment: A survey. IEEE Journal of Selected Topics in Signal Processing 11, 1(2016), 6–21.Google ScholarGoogle ScholarCross RefCross Ref
  15. Augusto Garcia-Agundez, Christian Reuter, Polona Caserman, Robert Konrad, and Stefan Göbel. 2019. Identifying Cybersickness through Heart Rate Variability alterations. International Journal of Virtual Reality 19, 1 (Jan. 2019), 1–10. https://doi.org/10.20870/IJVR.2019.19.1.2907Google ScholarGoogle ScholarCross RefCross Ref
  16. Alireza Mazloumi Gavgani, Keith V Nesbitt, Karen L Blackmore, and Eugene Nalivaiko. 2017. Profiling subjective symptoms and autonomic changes associated with cybersickness. Autonomic Neuroscience 203 (2017), 41–50.Google ScholarGoogle ScholarCross RefCross Ref
  17. Konstantinos Georgiou, Andreas V Larentzakis, Nehal N Khamis, Ghadah I Alsuhaibani, Yasser A Alaska, and Elias J Giallafos. 2018. Can wearable devices accurately measure heart rate variability? A systematic review. Folia medica 60, 1 (2018), 7–20.Google ScholarGoogle Scholar
  18. Guilherme Gonçalves, Pedro Monteiro, Miguel Melo, José Vasconcelos-Raposo, and Maximino Bessa. 2020. A comparative study between wired and wireless virtual reality setups. IEEE Access 8(2020), 29249–29258.Google ScholarGoogle ScholarCross RefCross Ref
  19. Jesus Gutierrez, Pablo Perez, Marta Orduna, Ashutosh Singla, Carlos Cortes, Pramit Mazumdar, Irene Viola, Kjell Brunnstrom, Federica Battisti, Natalia Cieplinska, Dawid Juszka, Lucjan Janowski, Mikoaj Igor Leszczuk, Anthony Adeyemi-Ejeye, Yaosi Hu, Zhengzhong Chen, Glenn Van Wallendael, Peter Lambert, Cesar Diaz, John Hedlund, Omar Hamsis, Stephan Fremerey, Frank Hofmeyer, Alexander Raake, Pablo Cesar, Marco Carli, and Narciso Garcia. 2021. Subjective evaluation of visual quality and simulator sickness of short 360 videos: ITU-T Rec. P.919. IEEE Transactions on Multimedia XX, XX (2021), 1–1. https://doi.org/10.1109/TMM.2021.3093717Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Rifatul Islam, Yonggun Lee, Mehrad Jaloli, Imtiaz Muhammad, Dakai Zhu, Paul Rad, Yufei Huang, and John Quarles. 2020. Automatic detection and prediction of cybersickness severity using deep neural networks from user’s physiological signals. In 2020 IEEE International Symposium on Mixed and Augmented Reality. IEEE, Porto de Galinhas, Brazil, 400–411.Google ScholarGoogle ScholarCross RefCross Ref
  21. ITU-T. 2020. Subjective test methodologies for 360º video on head-mounted displays. Recommendation P.919.Google ScholarGoogle Scholar
  22. Robert S Kennedy, Norman E Lane, Kevin S Berbaum, and Michael G Lilienthal. 1993. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The international journal of aviation psychology 3, 3 (1993), 203–220.Google ScholarGoogle Scholar
  23. Hyewon Kim, Dong Jun Kim, Won Ho Chung, Kyung-Ah Park, James DK Kim, Dowan Kim, Kiwon Kim, and Hong Jin Jeon. 2021. Clinical predictors of cybersickness in virtual reality (VR) among highly stressed people. Scientific reports 11, 1 (2021), 1–11.Google ScholarGoogle Scholar
  24. Hyun K. Kim, Jaehyun Park, Yeongcheol Choi, and Mungyeong Choe. 2018. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a VR environment. Applied Ergonomics 69 (May 2018), 66–73.Google ScholarGoogle Scholar
  25. Jinwoo Kim, Woojae Kim, Heeseok Oh, Seongmin Lee, and Sanghoon Lee. 2019. A deep cybersickness predictor based on brain signal analysis for virtual reality contents. In Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE, Seoul, Korea (South), 10580–10589.Google ScholarGoogle ScholarCross RefCross Ref
  26. Juno Kim, Wilson Luu, and Stephen Palmisano. 2020. Multisensory integration and the experience of scene instability, presence and cybersickness in virtual environments. Computers in Human Behavior 113 (2020), 106484.Google ScholarGoogle ScholarCross RefCross Ref
  27. Assem Kroma, Naz Al Kassm, and Robert J Teather. 2021. Motion Sickness Conditioning to Reduce Cybersickness. In Symposium on Spatial User Interaction (Virtual Event, USA). Association for Computing Machinery, New York, NY, USA, Article 22, 2 pages. https://doi.org/10.1145/3485279.3485300Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sylvain Laborde, Emma Mosley, and Julian F Thayer. 2017. Heart rate variability and cardiac vagal tone in psychophysiological research–recommendations for experiment planning, data analysis, and data reporting. Frontiers in psychology 8 (2017), 213.Google ScholarGoogle Scholar
  29. Yi-Tien Lin, Yu-Yi Chien, Hsiao-Han Wang, Fang-Cheng Lin, and Yi-Pai Huang. 2018. 65-3: The Quantization of Cybersickness Level Using EEG and ECG for Virtual Reality Head-Mounted Display. SID Symposium Digest of Technical Papers 49, 1 (May 2018), 862–865. https://doi.org/10.1002/sdtp.12267Google ScholarGoogle ScholarCross RefCross Ref
  30. Alireza Mazloumi Gavgani, Deborah M Hodgson, and Eugene Nalivaiko. 2017. Effects of visual flow direction on signs and symptoms of cybersickness. PloS one 12, 8 (2017), e0182790.Google ScholarGoogle ScholarCross RefCross Ref
  31. David Narciso, Maximino Bessa, Miguel Melo, António Coelho, and José Vasconcelos-Raposo. 2019. Immersive 360 video user experience: impact of different variables in the sense of presence and cybersickness. Universal Access in the Information Society 18, 1 (March 2019), 77–87. https://doi.org/10.1007/s10209-017-0581-5Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Heeseok Oh and Wookho Son. 2022. Cybersickness and Its Severity Arising from Virtual Reality Content: A Comprehensive Study. Sensors 22, 4 (2022), 1314.Google ScholarGoogle ScholarCross RefCross Ref
  33. Pablo Perez, Nuria Oyaga, Jaime J. Ruiz, and Alvaro Villegas. 2018. Towards Systematic Analysis of Cybersickness in High Motion Omnidirectional Video. In 2018 Tenth International Conference on Quality of Multimedia Experience. IEEE, Cagliari, 1–3. https://doi.org/10.1109/QoMEX.2018.8463377Google ScholarGoogle Scholar
  34. Roos Pot-Kolder, Wim Veling, Jacqueline Counotte, and Mark van der Gaag. 2018. Anxiety Partially Mediates Cybersickness Symptoms in Immersive Virtual Reality Environments. Cyberpsychology, Behavior, and Social Networking 21, 3 (March 2018), 187–193. https://doi.org/10.1089/cyber.2017.0082Google ScholarGoogle ScholarCross RefCross Ref
  35. Rebecca J. Reed-Jones, Lori Ann Vallis, James G. Reed-Jones, and Lana M. Trick. 2008. The relationship between postural stability and virtual environment adaptation. Neuroscience Letters 435, 3 (April 2008), 204–209. https://doi.org/10.1016/j.neulet.2008.02.047Google ScholarGoogle ScholarCross RefCross Ref
  36. Fred Shaffer and J. P. Ginsberg. 2017. An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health 5 (2017), 258. https://doi.org/10.3389/fpubh.2017.00258Google ScholarGoogle ScholarCross RefCross Ref
  37. Shamus P. Smith and Elizabeth L. Burd. 2019. Response activation and inhibition after exposure to virtual reality. Array 3-4 (Sept. 2019), 100010. https://doi.org/10.1016/j.array.2019.100010Google ScholarGoogle Scholar
  38. Maurício Sousa, Daniel Mendes, Soraia Paulo, Nuno Matela, Joaquim Jorge, and Daniel Simões Lopes. 2017. VRRRRoom: Virtual Reality for Radiologists in the Reading Room. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA). Association for Computing Machinery, New York, NY, USA, 4057–4062. https://doi.org/10.1145/3025453.3025566Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. William Bruce Stone III. 2017. Psychometric evaluation of the Simulator Sickness Questionnaire as a measure of cybersickness. Ph. D. Dissertation. Iowa State University.Google ScholarGoogle Scholar
  40. Raphael Vallat. 2018. Pingouin: statistics in Python. Journal of Open Source Software 3, 31 (2018), 1026.Google ScholarGoogle ScholarCross RefCross Ref
  41. Wilhelm von Rosenberg, Theerasak Chanwimalueang, Tricia Adjei, Usman Jaffer, Valentin Goverdovsky, and Danilo P Mandic. 2017. Resolving ambiguities in the LF/HF ratio: LF-HF scatter plots for the categorization of mental and physical stress from HRV. Frontiers in physiology 8 (2017), 360.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    IMX '22: Proceedings of the 2022 ACM International Conference on Interactive Media Experiences
    June 2022
    390 pages
    ISBN:9781450392129
    DOI:10.1145/3505284

    Copyright © 2022 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 22 June 2022

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate69of245submissions,28%

    Upcoming Conference

    IMX '24
  • Article Metrics

    • Downloads (Last 12 months)59
    • Downloads (Last 6 weeks)4

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format