skip to main content
research-article

Reflections on SEM: An Introspective, Idiosyncratic Journey to Composite-based Structural Equation Modeling

Published: 28 December 2021 Publication History

Abstract

For almost 40 years structural equation modeling (SEM) has been the statistical tool of choice for the assessing measurement and structural relationships in the social sciences. During the initial 30 years almost all applications of SEM utilized what has become known as covariance-based SEM. But in the past ten years an alternative structural equation modeling method, composite-based SEM, has increasingly been applied. In fact, a substantial number of social sciences scholars consider composite-based SEM the method of choice for structural equation modeling applications. In this paper, I provide an overview of the evolution of SEM, from the early years when factor-based SEM was the dominant method to the more recent years as composite-based methods have become much more prevalent. I also summarize several relevant composite-based topics including the emergence of composite-based SEM, confirmatory composite analysis (CCA), and a new method of generalized structured component analysis (GSCA). In the final section I propose some observations about current developments and future opportunities for composite-based SEM methods.

References

[1]
Aaker, D. A., & Bagozzi, R. P. (1979). Unobservable variables in structural equation models with an application in industrial selling. Journal of Marketing Research, 16(2), 147--58.
[2]
Babin, B. J., Hair, J. F., & Boles, J. S. (2008). Publishing research in marketing journals using structural equation modeling. Journal of Marketing Theory and Practice, 16(4), 279--285.
[3]
Babin, B. J., & Sarstedt, M. (2019). The great facilitator: Reflections on the contributions of Joseph F. Hair, Jr. to marketing and business research. Springer Nature: Switzerland.
[4]
Bido, D. S., & Silva, D. da. (2019). Importance of Hair's books in Brazilian business research. In Babin & Sarstedt (Eds.), The great facilitator: Reflections on the contributions of Joseph F. Hair, Jr. to marketing and business research (pp. 167--174). Springer Nature: Switzerland.
[5]
Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53(1), 605--634.
[6]
Brown, T. A. (2014). Confirmatory factor analysis for applied research. New York, NY: Guilford Publications.
[7]
Cheah, J.-H., Memon, M. A., Ting, H., Chuah, F., & Thurasamy, R. (2019). Read and cite Hair et al.: How the work of Joseph F. Hair impacts us in Malaysia. In Babin & Sarstedt (Eds.), The great facilitator: Reflections on the contributions of Joseph F. Hair, Jr. to marketing and business research (pp. 183--192). Springer Nature: Switzerland.
[8]
Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295--336.
[9]
Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2), 127--219.
[10]
Cho, G., Jung, K., & Hwang, H. (2019). Out-of-bag prediction error: A cross validation index for generalized structured component analysis. Multivariate Behavioral Research, 54(4), 505--513.
[11]
Cronbach, L. (1951). Coefficient alpha and the internal structure of tests. Psychometrica, 16(3), 297--334.
[12]
Darden, W. R., & Perreault, W. D., Jr. (1975). A multivariate analysis of media exposure and vacation behavior with lifestyle covariates. Journal of Consumer Research, 2(2), 93--103.
[13]
Dontha, R. (2013, January 13). Who came up with the name Big Data? Data Science Central, TechTarget. Retrieved from: https://www.datasciencecentral.com/profiles/blogs/who-came-up-with-the-name-big-data
[14]
Donthu, N., Kumar, S., & Campagna, C. (2020). Journal of marketing theory and practice: A retrospective of 2005--2019. Journal of Marketing Theory and Practice, https://doi.org/10.1080/10696679.2020.1723424
[15]
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological methods, 4(3), 272--299.
[16]
Fornell, C., & Larcker, D. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382--388.
[17]
Green, E. (2016, May 12). What are the most-cited publications in the social sciences according to Google Scholar? LSE. Retrieved from: http://blogs.lse.ac.uk/impactofsocialsciences/2016/05/12/what-are-the-most-cited-publications-in-the-social-sciences-according-to-google-scholar/
[18]
Grimm, L. G., & Yarnold, P. R. (Eds.). (1995). Reading and understanding multivariate statistics. Washington, D.C.: American Psychological Association.
[19]
Hair, J. F., Anderson, R. E., & Tatham, R. L. (1979). Multivariate data analysis: With readings. Tulsa, Oklahoma: PPC Books.
[20]
Hair, J. F., Astrachan, C. B., Moisescu, O. I., Radomir, L., Sarstedt, M., Vaithilingam, S., & Ringle, C. M. (2020a). Executing and interpreting applications of PLS-SEM: Updates for family business researchers. Journal of Family Business Strategy. Available at: https://doi.org/10.1016/j.jfbs.2020.100392
[21]
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). New York, NY: Pearson.
[22]
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019c). Multivariate data analysis (8th ed.). London: Cengage Learning.
[23]
Hair, J. F., Hollingsworth, C. L., Randolph, A. B., and Chong, A. Y. (2017a). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442--458.
[24]
Hair, J. F., Howard, M. C., & Nitzl, C. (2020b). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research. Available at: https://doi.org/10.1016/j. jbusres.2019.11.069
[25]
Hair, J. F., Hult, G. T., Ringle, C. M., & Sarstedt, M. (2013). A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks, Sage.
[26]
Hair, J. F., Hult, G. T., Ringle, C. M., & Sarstedt, M. (2017b). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Thousand Oaks: Sage.
[27]
Hair, J. F., Hult, G. T., Ringle, C. M., & Sarstedt, M. (2017c). Advanced issues in partial least squares structural equation modeling (PLS-SEM). Thousand Oaks, Sage.
[28]
Hair, J. F., Hult, G. T., Ringle, C. M., & Sarstedt, M. (2022a). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). Thousand Oaks, Sage.
[29]
Hair, J. F., Hult, T., Ringle, C. M., Sarstedt, M., Danks, N., & Ray, S. (2022b). Partial least squares structural equation modeling (PLS-SEM): Using R -- A workbook. Heidelberg: Springer.
[30]
Hair, J. F., Hult, G. T., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017d). Mirror, mirror on the wall: A comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science, 45, 616--632.
[31]
Hair, J. F., Page, M., & Brunsveld, N. (2020c). Essentials of business research methods (4th ed.). New York: Routledge.
[32]
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139--151.
[33]
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019a). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2--24.
[34]
Hair, J. F., Sarstedt, M. & Ringle, C. M. (2019b). Rethinking some of the rethinking of partial least squares. European Journal of Marketing, 53(4), 566--584.
[35]
Hair, J. F., Sarstedt, M., Ringle, C. M., Sharma, P. N., & Liengaard, B. D. (2022c). Creating myths using "simple" but flawed demonstrations of PLS-SEM: A rejoinder. European Journal of Marketing, forthcoming.
[36]
Hair, J. F., & Sarstedt, M. (2021a). Factors versus composites: Guidelines for choosing the right structural equation modeling method. Project Management Journal, 50(6), 619--624.
[37]
Hair, J. F., & Sarstedt, M. (2021b). Data, measurement, and causal inferences in machine learning: Opportunities and challenges for marketing. Journal of Marketing Theory and Practice, doi.org/10.1080/10696679.2020.1860683.
[38]
Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen, D. J., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common beliefs and reality about PLS: Comments on Ro?nkko? & Evermann (2013). Organizational Research Methods, 17(2), 182--209.
[39]
Hershberger, S. L. (2003). The growth of structural equation modeling: 1994--2001. Structural Equation Modeling, 10(1), 35--46.
[40]
Howard, M. C. (2016). A review of exploratory factor analysis decisions and overview of current practices: What we are doing and how can we improve? International Journal of Human-Computer Interaction, 32(1), 51--62.
[41]
Hubona, G. S., Schuberth, F., & Henseler, J. (2021). A clarification of confirmatory composite analysis (CCA). International Journal of Information Management, 61. Available at: https://doi.org/10.1016/j.ijinfomgt.2021.102399
[42]
Hwang, H., & Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69(1), 81--99.
[43]
Hwang, H., & Takane, Y. (2014). Generalized structured component analysis: A component-based approach to structural equation modeling. New York: Chapman & Hall.
[44]
Hwang, H., Takane, Y., & Malhotra, N. (2007). Multilevel generalized structured component analysis. Behaviormetrika, 34, 95--109.
[45]
Kaplan, A. (1964). The conduct of inquiry: Methodology for behavioral science. San Francisco, CA: Chandler Publishing Company.
[46]
Kaplan, B., & Duchon, D. (1988). Combining qualitative and quantitative methods in information systems research: A case study. MIS Quarterly, 12(4), 571--586.
[47]
Kline, P. (2014). An easy guide to factor analysis. London: Routledge.
[48]
Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). New York: Guilford Publications.
[49]
Liengaard, B., Sharma, P. N., Hult, G. T. M., Jensen, M. B., Sarstedt, M., Hair, J. F., & Ringle, C. M. (2020). Prediction: Coveted, yet forsaken? Introducing a cross-validated predictive ability test in partial least squares path modeling. Decision Sciences. Available at: https://doi.org/10.1111/deci.12445
[50]
Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Heidelberg: Physica.
[51]
Manley, S. C., Hair, J. F., Williams, R. I., & McDowell, W. C. (2020). Essential new PLS-SEM analysis methods for your entrepreneurship analytical toolbox. International Entrepreneurship and Management Journal. Available at: https://doi.org/10.1007/s11365-020-00687--6
[52]
Petter, S. (2018). "Haters gonna hate": PLS and information systems research. The DATABASE for Advances in Information Systems, 49(2), 10--13.
[53]
Preacher, K. J., & MacCallum, R. C. (2003). Repairing Tom Swift's electric factor analysis machine. Understanding Statistics: Statistical Issues in Psychology, Education, and the Social Sciences, 2(1), 13--43.
[54]
Rencher, A. C., & Christensen, W. F. (2012). Methods of multivariate analysis. Wiley.
[55]
Rigdon, E. E. (2014). Rethinking partial least squares path modeling: Breaking chains and forging ahead. Long Range Planning, 47(3), 161--167.
[56]
Rigdon, E. E., Sarstedt, M., & Ringle, C. M. (2017). On comparing results from CB-SEM and PLS-SEM: Five perspectives and five recommendations. Marketing ZFP, 39(3), 4--16.
[57]
Rigdon, E., Becker, J. M., & Sarstedt, M. (2019). Factor indeterminacy as metrological uncertainty: Implications for advancing psychological measurement. Multivariate Behavioral Research, 54(3), 429--443.
[58]
Rigdon, E. E., Sarstedt, M., & Becker, J.-M. (2020). Quantify uncertainty in behavioral research. Nature Human Behaviour, 4, 329--331. Available at: https://doi.org/10.1038/s41562-019-0806-0. https://rdcu.be/bZ4bm
[59]
Ringle, C. M., Wende, S., & Becker, J.-M. (2015). SmartPLS 3. SmartPLS.
[60]
Ringle, C. M. (2019). What makes a great textbook? Lessons learned from Joe Hair. In Babin & Sarstedt (Eds.), The great facilitator: Reflections on the contributions of Joseph F. Hair, Jr. to marketing and business research (pp. 131--150). Springer Nature: Switzerland.
[61]
Ronkko, M., & Evermann, J. (2013). A critical examination of common beliefs about partial least squares path modeling. Organizational Research Methods, 16(3), 425--448.
[62]
Ronkko, M., McIntosh, C. N., & Antonakis, J. (2015). On the adoption of partial least squares in psychological research: Caveat emptor. Personality and Individual Differences, 87, 76--84.
[63]
Sarstedt, M. (2019). Der knacks and a silver bullet. In Babin & Sarstedt (Eds.), The great facilitator: Reflections on the contributions of Joseph F. Hair, Jr. to marketing and business research (pp. 155--164). Springer Nature: Switzerland.
[64]
Sarstedt, M., & Cheah, J-H (2019). Partial least squares structural equation modeling using SmartPLS: A software review. Journal of Marketing Analytics, 7, 196--202.
[65]
Sarstedt, M., Ringle, C. M., Henseler, J., & Hair, J. F. (2014). On the Emancipation of PLS-SEM: A commentary on Rigdon (2012). Long Range Planning, 47(3), 154--160.
[66]
Sarstedt, M., & Hair, J. F. (2021). Explanation plus prediction -- The logical focus of project management research. Project Management Journal, forthcoming.
[67]
Sarstedt, M., Hair, J. F., Nitzl, C., Ringle, C. M., & Howard, M. C. (2020). Beyond a tandem analysis of SEM and PROCESS: Use PLS-SEM for mediation analyses! International Journal of Market Research, 62(3), 288--299.
[68]
Sarstedt, M., Hair, J. F., Cheah, J.-H., Becker, J.-M., & Ringle, C. M. (2019). How to specify, estimate, and validate higher-order models. Australasian Marketing Journal, 27(3), 197--211.
[69]
Sarstedt, M., Hair, J. F., Ringle, C., Thiele, K., & Gudergan, S. P. (2016). Estimation issues with PLS and CBSEM: Where the bias lies! Journal of Business Research, 69, 3998--4010.
[70]
Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Confirmatory composite analysis. Frontiers in Psychology, 9, 25--4.
[71]
Sharma, P. N., Shmueli, G., Sarstedt, M., Danks, N. & Ray, S. (2020). Prediction-oriented model selection in partial least squares path modeling. Decision Sciences, forthcoming.
[72]
Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J.-H., Ting, H., & Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322--2347.
[73]
Spearman, C. (1904). General intelligence objectively determined and measured. American Journal of Psychology, 15, 201--293.
[74]
Shiau, W-L., & Liu, Y. (2019). Prof. Hair's contributions in social science: a perspective on the professor's career. In Babin & Sarstedt (Eds.), The great facilitator: Reflections on the contributions of Joseph F. Hair, Jr. to marketing and business research (pp. 175--182). Springer Nature: Switzerland.
[75]
Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington, DC: American Psychological Association.
[76]
Tabassi, A. A., Roufechaei, K. M., Bakar, A. H. A., & Yusof, N. (2017). Linking team condition and team performance: A transformational leadership approach. Project Management Journal, 48(2), 22--38.
[77]
Tsang, R. (2020). Market reactions to risk factors disclosure: Evidence from cybersecurity incidents (Publication No. 27744296) [Doctoral dissertation, University of South Alabama]. ProQuest Dissertations Publishing.
[78]
Wold, H. (1974). Causal flows with latent variables: Partings of ways in the light of NIPALS modelling. European Economic Review, 5(1), 67--86.
[79]
Wold, H. (1982). Soft modeling: The basic design and some extensions. In Jöreskog, K. G. & Wold, H. (Eds.), Systems under indirect observations: Part II (pp. 1--54). North-Holland, Amsterdam.

Cited By

View all
  • (2025)Exploring Mediating Role Of Job Engagement Between Occupational Stress And Organizational Commitment Among IT ProfessionalsTurkish Journal of Engineering10.31127/tuje.15823029:2(302-312)Online publication date: 19-Jan-2025
  • (2024)Ansiedad financiera en el gobierno corporativo mexicano:efecto de la autoeficacia y neuroticismoFinancial anxiety in Mexican corporate government:effect of self-efficacy and neuroticismRetos10.17163/ret.n28.2024.1014:28(341-353)Online publication date: 27-Sep-2024
  • (2024)Is it important for tourists to say, “This is my destination?”Journal of Vacation Marketing10.1177/13567667241248977Online publication date: 2-May-2024
  • Show More Cited By

Index Terms

  1. Reflections on SEM: An Introspective, Idiosyncratic Journey to Composite-based Structural Equation Modeling

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM SIGMIS Database: the DATABASE for Advances in Information Systems
    ACM SIGMIS Database: the DATABASE for Advances in Information Systems  Volume 52, Issue SI
    December 2021
    126 pages
    ISSN:0095-0033
    EISSN:1532-0936
    DOI:10.1145/3505639
    Issue’s Table of Contents
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 December 2021
    Published in SIGMIS Volume 52, Issue SI

    Check for updates

    Author Tags

    1. common factor sem
    2. composite-based sem
    3. covariance-based sem
    4. factor-based sem
    5. pls-sem

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)154
    • Downloads (Last 6 weeks)7
    Reflects downloads up to 17 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Exploring Mediating Role Of Job Engagement Between Occupational Stress And Organizational Commitment Among IT ProfessionalsTurkish Journal of Engineering10.31127/tuje.15823029:2(302-312)Online publication date: 19-Jan-2025
    • (2024)Ansiedad financiera en el gobierno corporativo mexicano:efecto de la autoeficacia y neuroticismoFinancial anxiety in Mexican corporate government:effect of self-efficacy and neuroticismRetos10.17163/ret.n28.2024.1014:28(341-353)Online publication date: 27-Sep-2024
    • (2024)Is it important for tourists to say, “This is my destination?”Journal of Vacation Marketing10.1177/13567667241248977Online publication date: 2-May-2024
    • (2024)Exploring the mediating role of job and life satisfaction between work–family conflict, family–work conflict and turnover intentionEvidence-based HRM: a Global Forum for Empirical Scholarship10.1108/EBHRM-04-2023-0091Online publication date: 31-Jul-2024
    • (2024)From outreach to outcome: exploring the impact of integrated marketing communication on the performance of small and medium-sized enterprisesCogent Business & Management10.1080/23311975.2024.237107011:1Online publication date: 30-Jun-2024
    • (2024)Analyzing resilience influencing factors in the prefabricated building supply chain based on SEM-SD methodologyScientific Reports10.1038/s41598-024-65271-214:1Online publication date: 29-Jul-2024
    • (2024)Linking enterprise information systems success to female employees’ work–family enrichment in ChinaJournal of Management & Organization10.1017/jmo.2024.7(1-18)Online publication date: 21-Feb-2024
    • (2024)Effects of resource orchestration, strategic information exchange capabilities, and digital orientation on innovation and performance of hotel supply chainsInternational Journal of Hospitality Management10.1016/j.ijhm.2023.103645117(103645)Online publication date: Feb-2024
    • (2024)How does social change encourage or discourage the support for the development of Cittaslow?Cities10.1016/j.cities.2023.104721145(104721)Online publication date: Feb-2024
    • (2024)Consumption of plant-based foods: motives and drivers among Italian consumersPlant-Based Food Consumption10.1016/B978-0-323-98828-5.00011-5(33-57)Online publication date: 2024
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media