skip to main content
research-article

Handwritten New Tai Lue Character Recognition Using Convolutional Prior Features and Deep Variationally Sparse Gaussian Process Modeling

Authors Info & Claims
Published:20 January 2022Publication History
Skip Abstract Section

Abstract

New Tai Lue is widely used in Southwest China and Southeast Asia. Hence, it is important to study related handwritten character recognition. Considering the many similar characters in handwritten New Tai Lue, this paper proposes an offline handwritten New Tai Lue character recognition method based on convolutional prior features and deep variationally sparse Gaussian process (DVSGP) modeling. An offline handwritten database is constructed, a convolutional neural network is trained to extract the convolutional features of New Tai Lue character images as prior features, and a DVSGP model is built. The extracted features are input into the DVSGP model to construct a recognition model. The experimental results show that the accuracy of the model is 97.67% and that the precision, recall, and F1-score are 0.9769, 0.9767, and 0.9767, respectively, which are better than those of other methods. The proposed method also achieves high accuracy on the MNIST recognition task, verifying its universal applicability.

REFERENCES

  1. [1] Poornima Devi. M. and Sornam M.. 2020. Classification of ancient handwritten Tamil characters on palm leaf inscription using modified adaptive backpropagation neural network with GLCM features. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 19, 6 (November 2020), 124. https://doi.org/10.1145/3406209 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. [2] Zhang Xu-Y., Yin Fei, Zhang Yan M., Liu Cheng-Lin, Bengio Yoshua, and Liu Cheng-Lin. 2018. Drawing and recognizing Chinese characters with recurrent neural network. IEEE Trans. Pattern Anal. Mach. Intell. 40, 4 (April 2018), 849862. 10.1109/TPAMI.2017.2695539Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Yu Yong, Yu Peng F., Li Hai Y., and Zhou Hao. 2018. Online handwritten character recognition of New Tai Lue based on online random forests Adv. Intell. Sys. Comput. 686, (August 2018), 426434. https://doi.org/10.1007/978-3-319-69096-4_59Google ScholarGoogle Scholar
  4. [4] Nongmeikapam Kishorjit, Wahengbam Kanan, Meetei Oinam N., and Tuithung Themrichon. 2019. Handwritten Manipuri Meetei-Mayek classification using convolutional neural network. ACM Trans. Asian Low-Reso. 18, 4, Article 35 (August 2019), 1–23. https://doi.org/10.1145/33094977 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [5] Gao Fei, Yang Yue, Wang Jun, Sun Jin P., Yang Erfu, and Zhou Hui Y.. 2018. A deep convolutional generative adversarial networks (DCGANs)-based semi-supervised method for object recognition in synthetic aperture radar (SAR) images. Remote Sens-Basel. 10, 6 (2018), 846. https://doi.org/10.3390/rs10060846Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Damianou Andreas and Lawrence Neil D.. 2013. Deep Gaussian processes, arXiv:1211.0358 12, (March 2013), 207215.Google ScholarGoogle Scholar
  7. [7] Hebbal Ali, Brevault Loïc, Balesdent Mathieu, Talbi El-Ghazali, and Melab Nouredine. 2018. Efficient global optimization using deep Gaussian processes. IEEE Congr. Evol. Comput., CEC - Conf. Proc. (July 2018), 18. https://doi.org/10.1109/CEC.2018.8477946Google ScholarGoogle Scholar
  8. [8] Natsagdorj Narankhuu. 2016. Mongolian handwriting character recognition based on convolutional neural network (CNN). Sixth Appl. Mech. Mater. 2016 (October 2016), 580584. https://doi.org/10.2991/icimm-16.2016.105Google ScholarGoogle Scholar
  9. [9] Huang He M. and Da Fei P.. 2015. A dictionary learning and KPCA-based feature extraction method for off-line handwritten Tibetan character recognition. Optik 126, 23 (December 2015), 37953800. https://doi.org/10.1016/j.ijleo.2015.07.144Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Deng Feng, Li Peng F., Yu Hai Y., and Peng Li Ge. 2016. Printed New Tai Lue character recognition based on BP neural network. IEEE Int. Conf. Signal Image Process. ICSIP (August 2016), 339342. https://doi.org/10.1109/SIPROCESS.2016.7888280Google ScholarGoogle Scholar
  11. [11] Yu Yong, Yu Peng F., Li Hai Y., and Zhou Hao. 2017. Online handwritten character recognition of New Tai Lue based on online random forests. Adv. Intell. Sys. Comput. (November 2017), 7074. https://doi.org/10.1007/978-3-319-69096-4_59Google ScholarGoogle Scholar
  12. [12] Zhang Xu Y. and Liu Cheng-Lin. 2013. Evaluation of weighted Fisher criteria for large category dimensionality reduction in application to Chinese handwriting recognition. Pattern Recognt. 46, 9 (September 2013), 25992611. https://doi.org/10.1016/j.patcog.2013.01.036 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. [13] Wu Yi C., Yin Fei, and Liu Cheng L., 2016. Improving handwritten Chinese text recognition using neural network language models and convolution neural network shape models. Pattern Recognt. 65, (May 2017), 251264. https://doi.org/10.1016/j.patcog.2016.12.026 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. [14] Ren Hai Q., Wang Wei Q., and Liu Cheng L.. 2019. Recognizing online handwritten Chinese characters using RNNs with new computing architectures. Pattern Recognt. 93, (September 2019), 179192. https://doi.org/10.1016/j.patcog.2019.04.015Google ScholarGoogle ScholarCross RefCross Ref
  15. [15] Yao Xu-, Zhang Yan M., Bengio Yoshua, and Liu Cheng L.. 2017. Online and offline handwritten Chinese character recognition: A comprehensive study and new benchmark. arXiv:1606.05763. 61 (June 2017), 348360. https://doi.org/10.1016/j.patcog.2016.08.005Google ScholarGoogle Scholar
  16. [16] Chomphuwiset Phatthanaphong. 2017. Printed Thai character segmentation and recognition. IEEE Int. Conf. Soft Comput. Mach. Intell., ISCMI (November 2017), 123127. DOI: 10.1109/ISCMI.2017.8279611Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Mukherjee Subham, Kumar Pradeep, and Roy Partha Pratim. 2019. Fusion of spatio-temporal information for Indic word recognition combining online and offline text data. ACM Trans. Asian Low-Reso. 19, 2 (March 2020), 124. https://doi.org/10.1145/3364533 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. [18] Bhattacharya Nilanjana, Roy Partha P., and Pal Umapada. 2018. Sub-stroke-wise relative feature for online Indic handwriting recognition. ACM Trans. Asian Low-Reso 18, 2 (February 2019), 116. https://doi.org/10.1145/3264735 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. [19] Sharifzadeh Foroogh, Akbarizadeh Gholamreza, and Kavian Yousef S.. 2019. Ship classification in SAR images using a new hybrid CNN–MLP classifier. J. Indian Soc. Remote Sens. 47, (April 2019), 551562. https://doi.org/10.1007/s12524-018-0891-yGoogle ScholarGoogle ScholarCross RefCross Ref
  20. [20] Feng Guan C., Quirk Gerald J., and Djurić Petar M.. 2018. Supervised and unsupervised learning of fetal heart rate tracings with deep Gaussian processes. Neural Networks Appl., NEUREL (December 2018), 16. 10.1109/NEUREL.2018.8586992Google ScholarGoogle Scholar
  21. [21] Wang Jia H., Zhang Jian X., Sun Qiu L., Liu Bin, and Zhang Qiang. 2018. Robust deep Gaussian descriptor for texture recognition. Lect. Notes Comput. Sci. 11164, (September 2018), 448457. https://doi.org/10.1007/978-3-030-00776-8_41Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. [22] Wang Yali, Li Lin, and Qiao Yu. 2016. Human action recognition with deep action kernel Gaussian process. ICARM - IEEE Int. Conf. Adv. Robot. Mechatronics (August 2016), 165170. https://doi.org/10.1109/ICARM.2016.7606913Google ScholarGoogle Scholar
  23. [23] Chen Sih-Huei, Lee Yuan S., Hsieh Wen C., and Wang Jia C.. 2015. Music emotion recognition using deep Gaussian process. Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit Conf., APSIPA ASC - Proc. (February 2015), 495498. https://doi.org/10.1109/APSIPA.2015.7415321Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Wang Hui J., Zhao Jing, Tang Zeheng, and Sun Shi L.. 2017. Educational and non-educational text classification based on deep Gaussian processes. Commun. Comput. Info. Sci. (October 2017), 415423. https://doi.org/10.1007/978-3-319-70087-8_44Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. [25] Yang Qing S., Yan Ping K., Zhang Yan B., Yu Heng Y., Shi Yong Y., Mou Xuan Q., Kalra Mannudeep K., Zhang Yi, Sun Ling, and Wang Ge. 2018. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37, (April 2018), 13481357. https://doi.org/10.1109/TMI.2018.2827462Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Wang Yile, Cui Le Y., and Zhang Yue. 2021. Improving skip-gram embeddings using BERT. IEEE ACM Trans. Audio Speech Lang. Process, (March 2021) 29, 13181328. https://doi.org/10.1109/TASLP.2021.3065201Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. [27] Qiu Xi P., Sun Tian X., Xu Yi G., and Fan Shao Yun. 2020. Pre-trained models for natural language processing: A survey. Sci. China Technol. Sci. (October 2020), 63 (10), 18721897. https://doi.org/10.1007/s11431-020-1647-3Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Sutramiani Ni Putu, Suciati Nanik, and Siahaan Daniel. 2020. Transfer learning on Balinese character recognition of lontarmanuscript using MobileNet. ICICoS - Proceeding: Int. Conf. Informatics Comput. Sci. (November 2020). 1--5. https://doi.org/10.1109/ICICoS51170.2020.9299030Google ScholarGoogle Scholar
  29. [29] Nagender Aneja and Sandhya Aneja. 2019. Transfer learning using CNN for handwritten Devanagari character recognition. IEEE Int. Conf. Adv. Inf. Technol., ICAIT - Proc., (July 2019), 293296. https://doi.org/10.1109/ICAIT47043.2019.8987286Google ScholarGoogle Scholar
  30. [30] Boufenar Chaouki, Kerboua Adlen, and Batouche Mohamed. 2018. Investigation on deep learning for off-line handwritten Arabic character recognition. Cogn. Sys. Res., 50 (August 2018), 180195. https://doi.org/10.1016/j.cogsys.2017.11.002Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Liu Cun, Li Yuan X., Luo Jian H., and Zhou Yong J.. 2017. A novel convolutional neural network architecture for image super-resolution based on channels combination. Int. Conf. Inf. Fusion, Fusion - Proc., (August 2017), 18. https://doi.org/10.23919/ICIF.2017.8009771Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Szegedy Christian, Liu Wei, Jia Yangqing, et al. 2015. Going deeper with convolutions. Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit. (October 2015), 1--9. https://doi.org/10.1109/CVPR.2015.7298594Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Titsias Michalis. 2009. Variational learning of inducing variables in sparse Gaussian processes. Aistats - Int. Conf. Artif. Intell. Stat. (June 2009), 567574. http://dx.doi.org/Google ScholarGoogle Scholar
  34. [34] Hensman James, Matthews Alexander G. de G., Filippone Maurizio, and Ghahramani Zoubin. 2015. MCMC for variationally sparse Gaussian processes. Proc. Internat. Conf. Intell. Sens. Inf. Process. 1, (June 2015), 16481656. https://arxiv.org/abs/1506.04000 Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. [35] Damianou Andreas C. and Lawrence Neil D.. 2013. Deep Gaussian processes. Proc. Int. Conf. Artificial. Intelligence. Statist (March 2013), 207215.Google ScholarGoogle Scholar
  36. [36] Svendsen Daniel H., Morales-Álvarez Pablo, Molina Rafael, and Camps-Valls Gustau. 2018. Deep Gaussian processes for geophysical parameter retrieval. Dig Int Geosci Remote Sens Symp (IGARSS) (July 2018), 61756178. https://doi.org/10.1109/IGARSS.2018.8517647Google ScholarGoogle Scholar
  37. [37] Hoffman Matthew D., Blei David M., Wang Chong, and Paisley John. 2012. Stochastic variational inference. Computer Science 14, 1 (May 2012), 13031347. https://doi.org/10.1049/iet-cta.2012.0551Google ScholarGoogle Scholar
  38. [38] Krauth Karl, Bonilla Edwin V., Cutajar Kurt, and Filippone Maurizio. 2017. AutoGP: Exploring the capabilities and limitations of Gaussian process models. 08, (May 2017). https://arxiv.org/abs/161005392KGoogle ScholarGoogle Scholar
  39. [39] Havasi Marton, Hernández-Lobato José M., and Murillo-Fuentes Juan J.. 2018. Deep Gaussian processes with decoupled inducing inputs. (January 2018). https://arxiv.org/abs/1801.02939Google ScholarGoogle Scholar
  40. [40] Niepert Mathias, Ahmed Mohamed, and Kutzkov Konstantin. 2016. Learning convolutional neural networks for graphs. 48, (June 2016), 20142023. https://arxiv.org/abs/1605.05273Google ScholarGoogle Scholar
  41. [41] Han Kai, Wang Yun H., Tian Qi, et al. 2020. GhostNet: More features from cheap operations. CVPR (August 2020), 15771586. https://doi.org/10.1109/CVPR42600.2020.00165Google ScholarGoogle Scholar
  42. [42] Williams Christopher K. I. and Rasmussen Carl E.. 1996. Gaussian processes for regression. In Advances in Neural Information Processing Systems (November 1996), 514520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Kumar Vinayak, Singh Vaibhav, Srijith P. K., and Damianou Andreas. 2018. Deep Gaussian processes with convolutional kernels, (June 2018). https://arxiv.org/abs/1806.01655Google ScholarGoogle Scholar
  44. [44] Xu Chunyan et al. 2016. Multi-loss regularized deep neural network. IEEE Trans. Circuits Syst. Video Technol. 26, 12 (September 2016), 22732283. https://doi.org/10.1109/TCSVT.2015.2477937 Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. [45] Goodfellow Lan J., Shlens Jonathon, and Szegedy Christian. 2014. Explaining and harnessing adversarial examples. arXiv preprint arXiv (December 2014), 1412.6572. https://arxiv.org/abs/1412.6572Google ScholarGoogle Scholar
  46. [46] Courbariaux Matthieu, Bengio Yoshua, and David Jean-Pierre. 2015. BinaryConnect: Training deep neural networks with binary weights during propagations. Lect. Notes Comput. Sci. 2, (December 2015), 31233131. https://arxiv.org/abs/1511.00363Google ScholarGoogle Scholar
  47. [47] Chan Tsung H., Gao Kui Jia Sheng H., Lu Ji W., Zeng Zi N., and Ma Yi. 2015. PCANet: A simple deep learning baseline for image classification. IEEE Trans. Image Process. 24, 12 (December 2015), 50175032, https://doi.org/10.1109/TIP.2015.2475625Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. [48] Xu Chun Y., Lu Can Y., Liang Xiao D., et al. 2016. Multi-loss regularized deep neural network. IEEE Trans. Circuits Syst. Video Technol. 26, 12 (September 2016), 22732283. https://doi.org/10.1109/TCSVT.2015.2477937 Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. [49] Alom MdZahangir, Hasan Mahmudul, Yakopcic Chris, and Taha Tarek M.. 2017. Inception recurrent convolutional neural network for object recognition, (December 2017). arXiv:1712.09888, https://doi.org/10.1007/s00138-020-01157-3Google ScholarGoogle Scholar

Index Terms

  1. Handwritten New Tai Lue Character Recognition Using Convolutional Prior Features and Deep Variationally Sparse Gaussian Process Modeling

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Asian and Low-Resource Language Information Processing
      ACM Transactions on Asian and Low-Resource Language Information Processing  Volume 21, Issue 4
      July 2022
      464 pages
      ISSN:2375-4699
      EISSN:2375-4702
      DOI:10.1145/3511099
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 January 2022
      • Accepted: 1 December 2021
      • Revised: 1 September 2021
      • Received: 1 March 2021
      Published in tallip Volume 21, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Refereed
    • Article Metrics

      • Downloads (Last 12 months)83
      • Downloads (Last 6 weeks)9

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text

    HTML Format

    View this article in HTML Format .

    View HTML Format