skip to main content
research-article

A Comprehensive Study of Deep Learning-based Covert Communication

Authors Info & Claims
Published:06 October 2022Publication History
Skip Abstract Section

Abstract

Deep learning-based methods have been popular in multimedia analysis tasks, including classification, detection, segmentation, and so on. In addition to conventional applications, this model can be widely used for cover communication, i.e., information hiding. This article presents a review of deep learning-based covert communication scheme for protecting digital contents, devices, and models. In particular, we discuss the background knowledge, current applications, and constraints of existing deep learning-based information hiding schemes, identify recent challenges, and highlight possible research directions. Further, major role of deep learning in the area of information hiding are highlighted. Then, the contribution of surveyed scheme is also summarized and compared in the context of estimation of design objectives, approaches, evaluation metric, and weaknesses. We believe that this survey can pave the way to new research in this crucial field of information hiding in deep-learning environment.

REFERENCES

  1. [1] Singh A. K.. 2020. Data hiding: Current trends, innovation, and potential challenges. ACM Trans. Multimed. Comput. Commun. Appl. 16, 3s (2020), 1–16. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. [2] Sun W., Zhou J., Li Y., Cheung M., and She J.. 2021. Robust high-capacity watermarking over online social network shared images. IEEE Trans. Circ. Syst. Video Technol. 31, 3 (2021), 12081221.Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Hou J., Ou B., Tian H., and Qin Z.. 2020. Reversible data hiding based on multiple histograms modification and deep neural networks. Signal Process. Image Commun. 92 (2020). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Ingaleshwar S., Dharwadkar N. V., and Jayadevappa D.. 2021. Water chaotic fruit fly optimization-based deep convolutional neural network for image watermarking using wavelet transform. Multimed. Tools Appl. (2021). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Singh A. K., Kumar B., Singh G., and Mohan A.. 2017. Medical Image Watermarking: Techniques and Applications. Springer International Publishing.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. [6] Singh A. K., Anand A., Lv Z., Ko H., and Mohan A.. 2021. A survey on healthcare data: A security perspective. ACM Trans. Multimed. Comput. Commun. Appl. 17, 2s (2021), 126. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. [7] Singh K. N. and Singh A. K.. 2022. Towards integrating image encryption with compression : A survey. ACM Trans. Multimed. Comput. Commun. Appl. 18, 3 (2022), 121.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. [8] Salehi S., Abedi A., Balakrishnan S., and Gholamrezanezhad A.. 2020. Coronavirus disease 2019 (COVID-19): A systematic review of imaging findings in 919 patients. Am. J. Roentgenol. 215, 1 (2020), 17. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Anand A. and Singh A. K.. 2021. SDH : Secure data hiding in fused medical image for smart healthcare. IEEE Trans. Comput. Soc. Syst. (2021), 19. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Xiong L., Han X., Yang C.-N., and Xia Z.. 2022. RDH-DES : Reversible data hiding over distributed encrypted-image servers based on secret sharing ching-nung yang. ACM Trans. Multimed. Comput. Commun. Appl. (2022). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] Eloff M. M. and Eloff J. H. P.. 2002. Human computer interaction: An information security perspectives. IFIP Adv. Inf. Commun. Technol. 86 (2002), 535545. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Huang H., Gong T., Ye N., Wang R., and Dou Y.. 2017. Private and secured medical data transmission and analysis for wireless sensing healthcare system. IEEE Trans. Ind. Informatics 13, 3 (2017), 12271237. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Jagadeesh B., Kumar P. R., and Reddy P. C.. 2016. Robust digital image watermarking based on fuzzy inference system and back propagation neural networks using DCT. Soft Comput 20, 9 (2016), 36793686. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. [14] Kazemi M. F., Pourmina M. A., and Mazinan A. H.. 2020. Analysis of watermarking framework for color image through a neural network-based approach. Complex Intell. Syst. 6, 1 (2020), 213220. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  15. [15] Mun S. M., Nam S. H., Jang H. U., Kim D., and Lee H. K.. 2017. A robust blind watermarking using convolutional neural network. arXiv (2017) 15. https://arxiv.org/pdf/1704.03248.pdf.Google ScholarGoogle Scholar
  16. [16] Singh A. K., Kumar B., Singh S. K., Ghrera S. P., and Mohan A.. 2018. Multiple watermarking technique for securing online social network contents using back propagation neural network. Futur. Gener. Comput. Syst. 86 (2018), 926939. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. [17] Zear A., Singh A. K., and Kumar P.. 2016. A proposed secure multiple watermarking technique based on DWT, DCT and SVD for application in medicine. Multimed. Tools Appl. 77, 4 (2016), 48634882. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  18. [18] Anand A. and Singh A. K.. 2020. An improved DWT-SVD domain watermarking for medical information security. Comput. Commun. 152 (2020), 7280. DOI:Google ScholarGoogle Scholar
  19. [19] Thakur S., Singh A. K., Ghrera S. P., and Elhoseny M.. 2019. Multi-layer security of medical data through watermarking and chaotic encryption for tele-health applications. Multimed. Tools Appl. 78, 3 (2019), 34573470. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. [20] Anand A., Singh A. K., Lv Z., and Bhatnagar G.. 2020. Compression-then-encryption based secure watermarking technique for smart healthcare system. IEEE Multimed 27, 4 (2020), 133134. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. [21] Zhang J. et al. 2018. Protecting intellectual property of deep neural networks with watermarking. In Proceedings of the ACM Asia Conference on Computer Communication Security (ASIACCS’18). 159171. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. [22] Nagai Y., Uchida Y., Sakazawa S., and Satoh S.. 2018. Digital watermarking for deep neural networks. Int. J. Multimed. Inf. Retr. 7, 1 (2018), 316. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Kumar C., Singh A. K., and Kumar P.. 2018. A recent survey on image watermarking techniques and its application in e-governance. Multimed. Tools Appl 77, 3 (2018), 35973622. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. [24] Anand A. and Singh A. K.. 2021. Watermarking techniques for medical data authentication: A survey. Multimed. Tools Appl. 80 (2021), 30165–30197. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. [25] Islam M., Roy A., and Laskar R. H.. 2018. Neural network based robust image watermarking technique in LWT domain. J. Intell. Fuzzy Syst. 34, 3 (2018), 16911700. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. [26] Ding W., Ming Y., Cao Z., and Lin C.. 2021. A generalized deep neural network approach for digital watermarking analysis. IEEE Trans. Emerg. Top. Comput. Intell. (2021), 115. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Deeba F., Kun S., Dharejo F. A., and Memon H.. 2020. Digital image watermarking based on ANN and least significant bit. Inf. Secur. J 29, 1 (2020), 3039. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Hatoum M. W., Couchot J. F., Couturier R., and Darazi R.. 2020. Using deep learning for image watermarking attack. Signal Process. Image Commun. 90 (2020), 116019. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Ahmad J., Farman H., and Jan Z.. 2019. Deep learning methods and applications. In Deep Learning: Convergence to Big Data Analytics, SpringerBriefs in Computer Science. Springer Singapore, 2019, 3142.Google ScholarGoogle Scholar
  30. [30] Zhang Q. and Lin J.. 2018. Fault identification based on PD ultrasonic signal using RNN, DNN, and CNN. 2018 Condition Monitring and Diagnosis. IEEE, 16.Google ScholarGoogle Scholar
  31. [31] Fierro-Radilla A., Nakano-Miyatake M., Cedillo-Hernandez M., Cleofas-Sanchez L., and Perez-Meana H.. 2019. A robust image zero-watermarking using convolutional neural networks. In Proceedings of the 7th International Workshop on Biometrics Forensics (IWBF’19). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Kandi H., Mishra D., and Gorthi S. R. K. S.. 2017. Exploring the learning capabilities of convolutional neural networks for robust image watermarking. Comput. Secur. 65 (2017), 247268. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. [33] Bagheri M., Mohrekesh M., Karimi N., and Samavi S.. 2020. Adaptive control of embedding strength for image watermarking using neural networks. arXiv (2020), 14. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Huynh-The T., Hua C. H., Tu N. A., and Kim D. S.. 2019. Robust image watermarking framework powered by convolutional encoder-decoder network. In Proceedings of the Digital Image Computing: Techniques and Applications (DICTA’19). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Zheng W. et al. 2018. Robust and high capacity watermarking for image based on DWT-SVD and CNN. In Proceedings of the 13th IEEE Conference Industrial Electronics and Applications (ICIEA’18). 12331237. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] Li D., Deng L., Bhooshan Gupta B., Wang H., and Choi C.. 2019. A novel CNN based security guaranteed image watermarking generation scenario for smart city applications. Inf. Sci. (N.Y.) 479 (2019), 432447, 2019. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Deeba F., Kun S., Dharejo F. A., Langah H., and Memon H.. 2020. Digital watermarking using deep neural network. Int. J. Mach. Learn. Comput. 10, 2 (2020), 277282. DOI:Google ScholarGoogle Scholar
  38. [38] Li Y., Wang H., and Barni M.. 2021. A survey of deep neural network watermarking techniques. Neurocomputing 461, (2021), 171193. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Byrnes O., La W., Wang H., Ma C., Xue M., and Wu Q.. 2021. Data hiding with deep learning: A survey unifying digital watermarking and steganography. Retrieved from http://arxiv.org/abs/2107.09287Google ScholarGoogle Scholar
  40. [40] Zhang C., Lin C., Benz P., Chen K., Zhang W., and Kweon I. S.. 2021. A brief survey on deep learning based data hiding, steganography and watermarking. Retrieved from http://arxiv.org/abs/2103.01607Google ScholarGoogle Scholar
  41. [41] Raval M. S., Joshi M. V, and Kher S.. 2013. Fuzzy neural based copyright protection scheme for superresolution. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. 328332. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. [42] Oueslati S.. 2011. Adaptative image watermarking scheme based on neural network. Int. J. Eng. Sci. Technol. 3, 1 (2011), 748756.Google ScholarGoogle Scholar
  43. [43] Gaata M., Puech W., and Sadkhn S.. 2011. Digital watermarking method based on fuzzy image segmentation technique. In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology. 218223.Google ScholarGoogle Scholar
  44. [44] He W., Cai J., Zhou K., and Xiong G.. 2017. Efficient PVO-based reversible data hiding using multistage blocking and prediction accuracy matrix. J. Vis. Commun. Image Represent. 46 (2017), 5869. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. [45] Jia Y., Yin Z., Zhang X., and Luo Y.. 2019. Reversible data hiding based on reducing invalid shifting of pixels in histogram shifting. Signal Processing 163 (2019), 238246. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. [46] Li X., Zhang W., Gui X., and Yang B.. 2015. Efficient reversible data hiding based on multiple histograms modification. IEEE Trans. Inf. Forensics Secur. 10, 9 (2015), 20162027.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. [47] Tu F., Yin S., Ouyang P., and Tang S.. 2017. Deep convolutional neural network architecture with reconfigurable computation patterns. IEEE Trans. Very Large Scale Integr. Syst. 25, 8 (2017), 22202223. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. [48] Rouhani B. D., Chen H., and Koushanfar F.. 2018. DeepSigns: A generic watermarking framework for protecting the ownership of deep learning models. arXiv (2018), 113. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  49. [49] Sharma V. and Mir R. N.. 2019. An enhanced time efficient technique for image watermarking using ant colony optimization and light gradient boosting algorithm. J. King Saud Univ. Comput. Inf. Sci. 2019. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. [50] Zhang L. and Wei D.. 2019. Image watermarking based on matrix decomposition and gyrator transform in invariant integer wavelet domain. Signal Process. 169 (2019), 107421. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. [51] Sinhal R., Kumar D., and Ahmad I.. 2021. Machine learning based blind color image watermarking scheme for copyright protection ✩. Pattern Recogn. Lett. 145 (2021), 171177. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. [52] Papakostas G., Koulouriotis D. E., and Karakasis E. G.. 2014. Adaptive color image watermarking by the use of quaternion image moments. Expert Syst. Appl. 41, 14 (2014), 64086418. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Cedillo-Hernandez M., Cedillo-Hernandez A., Nakano-Miyatake M., and Perez-Meana H.. 2020. Improving the management of medical imaging by using robust and secure dual watermarking. Biomed. Signal Process. Control 56 (2020), 101695. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  54. [54] Tsai H.. 2007. Color image watermark extraction based on support vector machines. Inf. Sci. (N.Y.) 177 (2007), 550569. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  55. [55] Badshah G., Liew S. C., Zain J. M., and Ali M.. 2016. Watermark compression in medical image watermarking using lempel-ziv-welch (LZW) lossless compression technique. J. Digit. Imaging 29, 2 (2016), 216225. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  56. [56] Etemad E. et al. 2018. Robust image watermarking scheme using bit-plane of hadamard coefficients. Multimed. Tools Appl. 77, 2 (2018), 20332055. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. [57] Su Q. and Chen B.. 2018. Robust color image watermarking technique in the spatial domain. Soft Comput. 22, 1 (2018), 91106. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. [58] Qian H., Tian L., and Li C.. 2016. Robust blind image watermarking algorithm based on singular value quantization. In Proceedings of the ACM International Conference. 277280. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. [59] Plata M. and Syga P.. 2021. Robust spatial-spread deep neural image watermarking. In Proceedings of the IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom’21). 6270.Google ScholarGoogle Scholar
  60. [60] Zhu J., Kaplan R., Johnson J., and Fei-Fei L.. 2018. HiDDeN: Hiding data with deep networks. In Proceedings of the European Conference on Computer Vision (ECCV’18). 682697. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Luo X., Zhan R., Chang H., Yang F., and Milanfar P.. 2020. Distortion agnostic deep watermarking. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1354513554. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Ahmadi M., Norouzi A., Karimi N., Samavi S., and Emami A.. 2020. ReDMark: Framework for residual diffusion watermarking based on deep networks. Expert Syst. Appl. 146 (2020). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. [63] Banerjee S. and Singh G. K.. 2021. A new approach of ECG steganography and prediction using deep learning. Biomed. Signal Process. Control 64 (2020), 102151. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  64. [64] Xing Y. and Tan J.. 2010. A color image watermarking scheme resistant against geometrical attacks. Radioengineering 19, 1 (2010), 6267.Google ScholarGoogle Scholar
  65. [65] Ghafoor A. and Imran M.. 2012. A non-blind color image watermarking scheme resistent against geometric attacks. Radioengineering 21, 4 (2012), 12461251.Google ScholarGoogle Scholar
  66. [66] Member V. S. and Thangavelu P. A.. 2011. DC coefficients based watermarking technique for color images using singular value decomposition. Int. J. Comput. Electr. Eng. 3, 1 (2011), 816. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  67. [67] Zhao M. and Dang Y.. 2008. Color image copyright protection digital watermarking algorithm based on DWT & DCT. In Proceedings of the 4th International Conference on Wireless Communications, Networking and Mobile Computing. 14.Google ScholarGoogle ScholarCross RefCross Ref
  68. [68] Xiong X.. 2015. A new robust color image watermarking scheme based on 3D-DCT. World J. Eng. Technol. 3 (2015), 177183.Google ScholarGoogle ScholarCross RefCross Ref
  69. [69] Shi H., Lv F., and Cao Y.. 2014. A blind watermarking technique for color image based on SVD with circulation. J. Softw. 9, 7 (2014), 17491756. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  70. [70] Urvoy M., Goudia D., and Autrusseau F.. 2014. Perceptual DFT watermarking with improved detection and robustness to geometrical distortions. IEEE Trans. Inf. Forensics Secur. 9, 7 (2014), 11081119. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. [71] Ibaida A. and Khalil I.. 2013. Wavelet-based ECG steganography for protecting patient confidential information in point-of-care systems. IEEE Trans. Biomed. Eng 60, 12 (2013), 33223330. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  72. [72] Jero S. E., Ramu P., and Ramakrishnan S.. 2014. Discrete wavelet transform and singular value decomposition based ECG steganography for secured patient information transmission. J. Med. Syst. 38 (2014), 111. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. [73] Lei B., Tan E., Chen S., Ni D., Wang T., and Lei H.. 2014. Reversible watermarking scheme for medical image based on differential evolution. Expert Syst. Appl 41, 7 (2014), 31783188. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. [74] Chen S. T., Guo Y. J., Huang H. N., Kung W. M., Tseng K. K., and Tu S. Y.. 2014. Hiding patients confidential datainthe ECG signal viaa transform-domain quantization scheme topical collection on mobile systems. J. Med. Syst 38, 6 (2014), 18. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. [75] Tareef A. and Al-ani A.. 2015. A highly secure oblivious sparse coding-based watermarking system for ownership verification. Expert Syst. Appl 42, 4 (2015), 22242233. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. [76] Liji C. A., Indiradevi K. P., and Anish Babu K. K.. 2016. Integer-to-integer wavelet transform based ECG steganography for securing patient confidential information. Procedia Technol. 24 (2016), 10391047. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  77. [77] Jero S. Edward, Ramu P., and Swaminathan R.. 2016. Imperceptibility - robustness tradeoff studies for ECG steganography using continuous ant colony optimization. Expert Syst. Appl. 49 (2016), 123135. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. [78] Candès E., Demanet L., Donoho D., and Ying L.. 2006. Curvelets-based ecg steganography for data security. Multiscale Model. Simul 5, 3 (2006), 861899. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  79. [79] Abuadbba A. and Khalil I.. 2017. Walsh-hadamard-based 3D steganography for protecting sensitive information in point-of-care. IEEE Trans. Biomed. Eng 64, 9 (2017), 21862195. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  80. [80] Singh O. P. and Singh A. K.. 2021. Data hiding in encryption—Compression domain. Complex Intell. Syst. (2021). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  81. [81] Singh A. K., Dave M., and Mohan A.. 2016. Hybrid technique for robust and imperceptible multiple watermarking using medical images. Multimed. Tools Appl. 75, 14 (2016), 83818401. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. [82] Thakur S., Singh A. K., Kumar B., and Ghrera S. P.. 2020. Improved DWT-SVD-based medical image watermarking through hamming code and chaotic encryption. In Advances in VLSI, Communication, and Signal Processing. Lecture Notes in Electrical Engineering, D. Dutta, H. Kar, C. Kumar, and V. Bhadauria (eds). Springer Singapore, 897905.Google ScholarGoogle Scholar
  83. [83] Hsu L.. 2021. QDCT-based blind color image watermarking with aid of GWO and DnCNN for performance improvement. IEEE Access 9, 155138155152, 2021. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  84. [84] Byun S., Son H., and Lee S.. 2019. Fast and robust watermarking method based on DCT specific location. IEEE Access 7 (2019), 100706100718.Google ScholarGoogle ScholarCross RefCross Ref
  85. [85] Li J., Lin Q., Yu C., Ren X., and Li P.. 2018. A QDCT- and SVD-based color image watermarking scheme using an optimized encrypted binary computer-generated hologram. Soft Comput. 22, 1 (2018), 4765. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. [86] Chen B., Zhou C., and Jeon B.. 2018. Quaternion discrete fractional random transform for color image adaptive watermarking. Multimed. Tools Appl. 77 (2018), 2080920837.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. [87] Moosazadeh M. and Ekbatanifard G.. 2019. A new DCT-based robust image watermarking method using teaching-learning-Based optimization. J. Inf. Secur. Appl. 47 (2019), 2838. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. [88] Wu H., Liu G., Yao Y., and Zhang X.. 2020. Watermarking neural networks with watermarked images. IEEE Trans. Circ. Syst. Video Technol. 8215 (2020), 1. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  89. [89] Uchida Y.. 2017. Embedding watermarks into deep neural networks. In Proceedings of the ACM on International Conference on Multimedia Retrieval (ICMR’17). 269277.Google ScholarGoogle Scholar
  90. [90] Guan X., Feng H., Zhang W., Zhou H., Zhang J., and Yu N.. 2020. Reversible watermarking in deep convolutional neural networks for integrity authentication. In Proceedings of the 28th ACM International Conference on Multimedia. 22732280. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. [91] Jebreel N. M., Domingo-Ferrer J., Sánchez D., and Blanco-Justicia A.. 2021. Keynet: An asymmetric key-style framework for watermarking deep learning models. Appl. Sci. 11, 3 (2021), 122. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  92. [92] S. Mastorakis. 2021. DLWIoT: Deep learning-based watermarking for authorized IoT onboarding. In 18th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA. 1–7. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. [93] R. Anju and Vandana. 2013. Modified algorithm for digital image watermarking using combined DCT and DWT. Int. J. Inf. Comput. Technol. 3(7) (2013), 691700.Google ScholarGoogle Scholar
  94. [94] Arya R. K. and Saharan R.. 2015. A secure non-blind block based digital image watermarking technique using DWT and DCT. In Proceedings of the IEEE Conference on Advances in Computing, Communications and Informatics (ICACCI’15). 20422048.Google ScholarGoogle Scholar
  95. [95] Hallur S. R., Kuri S., Sudi G. S., and Kulkarni G. H.. 2015. A robust digital watermarking for gray scale image. Int. J. Technol. Res. Eng 2, 10 (2015), 24402443.Google ScholarGoogle Scholar
  96. [96] Jane O. and Elbaşi E.. 2014. A new approach of nonblind watermarking methods based on DWT and SVD via LU decomposition. Turkish J. Electr. Eng. Comput. Sci 22, 5 (2014), 13541366. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  97. [97] Kumar M. N, Manikandan T., and Sapthagirivasan V.. 2011. Non blind image watermarking based on similarity in contourlet domain. In Proceedings of the IEEE-International Conference on Recent Trends in Information Technology (ICRTIT’11). 12771282. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  98. [98] Pathak Y., Jain Y., and Dehariya S.. 2015. A secure transmission of medical images by single label SWT and SVD based non-blind watermarking technique. INFOCOMP J. Comp. Sci. 14, 1 (2015), 5059. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  99. [99] Saha B. J.. 2014. Non blind watermarking technique using enhanced one time pad in DWT domain. In Proceedings of the International Conference on Computing, Communication, and Networking Technologies (ICCCNT’14). 16.Google ScholarGoogle Scholar
  100. [100] Wang X., Ma D., Hu K., Hu J., and Du L.. 2021. Mapping based residual convolution neural network for non-embedding and blind image watermarking. J. Inf. Secur. Appl 59 (2021), 102820. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  101. [101] Ernawan F. and Kabir M. N.. 2020. A block-based RDWT-SVD image watermarking method using human visual system characteristics. Vis. Comput. 36, 1 (2020), 1937. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. [102] bing Kang X., Zhao F., feng Lin G., and jun Chen Y.. 2018. A novel hybrid of DCT and SVD in DWT domain for robust and invisible blind image watermarking with optimal embedding strength. Multimed. Tools Appl. 77, 11 (2018), 1319713224. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. [103] Araghi S. K., Manafa A. A., Kohpayeh S., and Araghi. 2018. A secure blind discrete wavelet transform based watermarking scheme using two-level singular value decomposition. Expert Syst. Appl. 112 (2018), 208228. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  104. [104] Hossein S., Amir S., Taherinia H., and Mohajerzadeh A. H.. 2019. WACA : A new blind robust watermarking method based on arnold cat map and amplified pseudo-noise strings with weak correlation. Multimed. Tools Appl 78 (2019), 1916319179.Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. [105] Mun S., Nam S., Jang H., Kim D., and Lee H.. 2019. Finding robust domain from attacks: A learning framework for blind watermarking. Neurocomputing 337 (2019), 191202. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. [106] Singh V., Anuj V., and Jha R. K.. 2019. A new scheme for watermark extraction using combined noise-induced resonance and support vector machine with PCA based feature reduction. Multimed. Tools Appl 78 (2019), 2320323224.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Comprehensive Study of Deep Learning-based Covert Communication

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Multimedia Computing, Communications, and Applications
      ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 18, Issue 2s
      June 2022
      383 pages
      ISSN:1551-6857
      EISSN:1551-6865
      DOI:10.1145/3561949
      • Editor:
      • Abdulmotaleb El Saddik
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 6 October 2022
      • Online AM: 15 May 2022
      • Accepted: 29 March 2022
      • Revised: 27 March 2022
      • Received: 13 October 2021
      Published in tomm Volume 18, Issue 2s

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text

    HTML Format

    View this article in HTML Format .

    View HTML Format