skip to main content
10.1145/3511808.3557117acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

BLUTune: Query-informed Multi-stage IBM Db2 Tuning via ML

Published:17 October 2022Publication History

ABSTRACT

Modern data systems such as IBM Db2 have hundreds of system configuration parameters, ''knobs", which heavily influence the performance of business queries. Manual configuration, ''tuning," by experts is painstaking and time consuming. We propose a query informed tuning system called BLUTune which uses machine learning (ML)-deep reinforcement learning based on advantage actor critic neural networks-to tune configurations within defined resource constraints. We translate high-dimensional query execution plans (QEPs) into a low-dimensional embedding space (QEP2Vec) for input into the ML models. To scale to complex and large workloads, we bootstrap the training process through transfer learning. We first train our model based on the estimated cost of queries; we then fine-tune it based on actual query execution times. We demonstrate by an experimental study over various synthetic and real-world workloads BLUTune's efficiency and effectiveness.

References

  1. Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan Zhang, Christian Billian, and Andrew Pavlo. 2021. An Inquiry into Machine Learning-based Automatic Configuration Tuning Services on Real-World Database Management Systems. PVLDB, Vol. 14, 7 (2021), 1241--1253.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. Deep Reinforcement Learning: A Brief Survey. Signal Processing Magazine, Vol. 34, 6 (2017), 26--38.Google ScholarGoogle ScholarCross RefCross Ref
  3. Peter Belknap, Benoit Dageville, Karl Dias, and Khaled Yagoub. 2009. Self-Tuning for SQL Performance in Oracle Database 11g. In ICDE. 1694--1700.Google ScholarGoogle Scholar
  4. Benoit Dageville, Dinesh Das, Karl Dias, Khaled Yagoub, Mohamed Zait, and Mohamed Ziauddin. 2004. Automatic SQL Tuning in Oracle 10g. In VLDB. 1098--1109.Google ScholarGoogle Scholar
  5. Guilherme Damasio, Spencer Bryson, Vincent Corvinelli, Parke Godfrey, Piotr Mierzejewski, Jaroslaw Szlichta, and Calisto Zuzarte. 2019a. GALO: Guided Automated Learning for re-Optimization. PVLDB, Vol. 12, 12 (2019), 1778--1781.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Guilherme Damasio, Vincent Corvinelli, Parke Godfrey, Piotr Mierzejewski, Alexandar Mihaylov, Jaroslaw Szlichta, and Calisto Zuzarte. 2019b. Guided automated learning for query workload re-optimization. PVLDB, Vol. 12, 12 (2019), 2010--2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Guilherme Damasio, Piotr Mierzejewski, Jaroslaw Szlichta, and Calisto Zuzarte. 2016a. OptImatch: Semantic web system for query problem determination. In ICDE. 1334--1337.Google ScholarGoogle Scholar
  8. Guilherme Damasio, Piotr Mierzejewski, Jaroslaw Szlichta, and Calisto Zuzarte. 2016b. Query Performance Problem Determination with Knowledge Base in Semantic Web System OptImatch. In EDBT. 515--526.Google ScholarGoogle Scholar
  9. Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani, and Graham Wood. 2005. Automatic Performance Diagnosis and Tuning in Oracle. In CIDR. 84--94.Google ScholarGoogle Scholar
  10. IBM Db2 Documentation. 2022a. Configuration parameters summary. https://www.ibm.com/docs/en/db2/11.5?topic=parameters-configuration-summary. Accessed: 2022-05-01.Google ScholarGoogle Scholar
  11. IBM Db2 Documentation. 2022b. Db2 registry and environment variables. https://www.ibm.com/docs/en/db2/11.5?topic=variables-registry-environment. Accessed: 2021--10-04.Google ScholarGoogle Scholar
  12. Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning Database Configuration Parameters with iTuned. Proc. VLDB Endow. (2009), 1246--1257.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Yihao Feng, Lihong Li, and Qiang Liu. 2019. A Kernel Loss for Solving the Bellman Equation. In NeurIPS. 15430--15441.Google ScholarGoogle Scholar
  14. Yaniv Gur, Dongsheng Yang, Frederik Stalschus, and Berthold Reinwald. 2021. Adaptive Multi-Model Reinforcement Learning for Online Database Tuning. In EDBT. 439--444.Google ScholarGoogle Scholar
  15. Eva Kwan, Sam Lightstone, K. Bernhard Schiefer, Adam J. Storm, and Leanne Wu. 2003. Automatic Database Configuration for DB2 Universal Database: Compressing Years of Performance Expertise into Seconds of Execution. In Datenbanksysteme fü r Business, Technologie und Web, BTW-Konferenz. 620--629.Google ScholarGoogle Scholar
  16. Quoc V. Le and Tomá s Mikolov. 2014. Distributed Representations of Sentences and Documents. In ICML. 1188--1196.Google ScholarGoogle Scholar
  17. Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. 2020. Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model. In NeurIPS. 2094----2100.Google ScholarGoogle Scholar
  18. Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas Neumann. 2017. Cardinality Estimation Done Right: Index-Based Join Sampling. In CIDR.Google ScholarGoogle Scholar
  19. Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware Database Tuning System with Deep Reinforcement Learning. PVLDB, Vol. 12, 12 (2019), 2118--2130.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Alexandar Mihaylov, Vincent Corvinelli, Parke Godfrey, Piotr Mierzejewski, Jaroslaw Szlichta, and Calisto Zuzarte. 2021. Scalable Learning to Troubleshoot Query Performance Problems. In CIKM. 4016--4025.Google ScholarGoogle Scholar
  21. Meikel Pö ss, Raghunath Othayoth Nambiar, and David Walrath. 2007. Why You Should Run TPC-DS: A Workload Analysis. In VLDB. 1138--1149.Google ScholarGoogle Scholar
  22. Patricia Selinger, Morton Astrahan, Donald Chamberlin, Raymond Lorie, and Thomas Price. 1979. Access path selection in a relational database management system. In SIGMOD. 23--34.Google ScholarGoogle Scholar
  23. Adam J. Storm, Christian Garcia-Arellano, Sam S. Lightstone, Yixin Diao, and M. Surendra. 2006. Adaptive Self-Tuning Memory in Db2. In VLDB.Google ScholarGoogle Scholar
  24. David G. Sullivan, Margo I. Seltzer, and Avi Pfeffer. 2004. Using probabilistic reasoning to automate software tuning. In SIGMETRICS. 404--405.Google ScholarGoogle Scholar
  25. Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. 2018. A Survey on Deep Transfer Learning. In ICANN. 270--279.Google ScholarGoogle Scholar
  26. Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017. Automatic Database Management System Tuning Through Large-Scale Machine Learning. In SIGMOD. 1009--1024.Google ScholarGoogle Scholar
  27. Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement learning with double Q-Learning. In AAAI. 2094----2100.Google ScholarGoogle Scholar
  28. Gerhard Weikum, Axel Mö nkeberg, Christof Hasse, and Peter Zabback. 2002. Self-tuning Database Technology and Information Services: from Wishful Thinking to Viable Engineering. In VLDB. 20--31.Google ScholarGoogle Scholar
  29. Bohan Zhang, Dana Van Aken, Justin Wang, Tao Dai, Shuli Jiang, Jacky Lao, Siyuan Sheng, Andrew Pavlo, and Geoffrey J. Gordon. 2018. A Demonstration of the OtterTune Automatic Database Management System Tuning Service. PVLDB, Vol. 11, 12 (2018), 1910--1913.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning. In SIGMOD. 415--432.Google ScholarGoogle Scholar
  31. Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song, and Yingchun Yang. 2017. BestConfig: Tapping the Performance Potential of Systems via Automatic Configuration Tuning. In SoCC. 338--350.Google ScholarGoogle Scholar

Index Terms

  1. BLUTune: Query-informed Multi-stage IBM Db2 Tuning via ML

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CIKM '22: Proceedings of the 31st ACM International Conference on Information & Knowledge Management
      October 2022
      5274 pages
      ISBN:9781450392365
      DOI:10.1145/3511808
      • General Chairs:
      • Mohammad Al Hasan,
      • Li Xiong

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 17 October 2022

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CIKM '22 Paper Acceptance Rate621of2,257submissions,28%Overall Acceptance Rate1,861of8,427submissions,22%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader