skip to main content
10.1145/3512290.3528840acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

A bounded archive based for bi-objective problems based on distance and e-dominance to avoid cyclic behavior

Published:08 July 2022Publication History

ABSTRACT

One important issue in evolutionary multi-objective optimization (EMO) which still leaves room for improvement is the maintenance of the subset of the obtained candidate solutions that forms the approximation of the Pareto front (in short: selection or archiving). Existing archivers that are entirely based on the distances between the candidate solutions are known to reveal cyclic behavior and do hence not tap their full potential. On the other hand, there exist archivers based on ∊-dominance that guarantee monotonic behaviors as well as certain approximation qualities in the limit. For such methods, however, so far the magnitudes of the final archive size heavily depend on several design parameters and cannot be bounded a priori which is desired by many EMO researchers.

In this paper, we propose a new archiver, ArchiveUpdateBound, for bi-objective problems that is based both on distance and ∊-dominance. ArchiveUpdateBound aims for a uniform spread of the solutions along the Pareto front, and the archive sizes can be bounded above. In particular, the use of ∊-dominance eliminates the occurrence of cyclic behavior. Numerical results using NSGA-II, MOEA/D, and SMS-MOEA on selected benchmark problems indicate that the use of the novel archiver significantly increases the performance of the base MOEAs.

References

  1. Nicola Beume, Boris Naujoks, and Michael Emmerich. 2007. SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181, 3 (2007), 1653--1669.Google ScholarGoogle ScholarCross RefCross Ref
  2. Johan M. Bogoya, Andrés Vargas, Oliver Cuate, and Oliver Schütze. 2018. A (p,q)-Averaged Hausdorff Distance for Arbitrary Measurable Sets. Mathematical and Computational Applications 23, 3 (2018).Google ScholarGoogle Scholar
  3. Johan M. Bogoya, Andrés Vargas, and Oliver Schütze. 2019. The Averaged Hausdorff Distances in Multi-Objective Optimization: A Review. Mathematics 7, 10 (2019).Google ScholarGoogle Scholar
  4. Dimo Brockhoff, Thanh-Do Tran, and Nikolaus Hansen. 2015. Benchmarking numerical multiobjective optimizers revisited. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. 639--646.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. 2007. Evolutionary Algorithms for Solving Multi-Objective Problems (second ed.). Springer, New York.Google ScholarGoogle Scholar
  6. D. W. Corne and J. D. Knowles. 2003. Some multiobjective optimizers are better than others. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE Press, 2506--2512.Google ScholarGoogle Scholar
  7. K. Deb. 2001. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester, UK. ISBN 0-471-87339-X.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Kalyanmoy Deb and Himanshu Jain. 2014. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. Transactions on Evolutionary Computation 18, 4 (2014), 577--601.Google ScholarGoogle ScholarCross RefCross Ref
  9. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on 6, 2 (2002), 182--197.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Michael Emmerich and AndrDeutz. 2007. Test problems based on Lamé super-spheres. In Evolutionary Multi-Criterion Optimization: 4th International Conference, EMO 2007, Matsushima, Japan, March 5--8, 2007. Proceedings, S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 922--936.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. K. Gerstl, G. Rudolph, O. Schütze, and H. Trautmann. 2011. Finding Evenly Spaced Fronts for Multiobjective Control via Averaging Hausdorff-Measure. In International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2011). IEEE, 1--6.Google ScholarGoogle Scholar
  12. T. Hanne. 1999. On the convergence of multiobjective evolutionary algorithms. European Journal of Operational Research 117 (1999), 553--564. Issue 3.Google ScholarGoogle ScholarCross RefCross Ref
  13. T. Hanne. 2001. Global multiobjective optimization with evolutionary algorithms: Selection mechanisms and mutation control. In Evolutionary Multi-Criterion Optimization, First International Conference, EMO 2001, Zurich, Switzerland. Springer Berlin, 197--212.Google ScholarGoogle Scholar
  14. T. Hanne. 2007. A multiobjective evolutionary algorithm for approximating the efficient set. European Journal of Operational Research 176 (2007), 1723--1734. Issue 3.Google ScholarGoogle ScholarCross RefCross Ref
  15. X Hanne. 2007. A Primal-Dual Multiobjective Evolutionary Algorithm for Approximating the Efficient Set. In Evolutionary Computation (CEC), 2007 IEEE Congress on. IEEE Press, 3127--3134.Google ScholarGoogle ScholarCross RefCross Ref
  16. C. Hillermeier. 2001. Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach. Vol. 135. Springer Science & Business Media.Google ScholarGoogle Scholar
  17. K. Ikeda, H. Kita, and S. Kobayashi. 2001. Failure of Pareto-based MOEAs: Does non-dominated really mean near to optimal?. In Evolutionary Computation (CEC), 2001 IEEE Congress on IEEE, 957--962.Google ScholarGoogle Scholar
  18. Hisao Ishibuchi, Takashi Matsumoto, Naoki Masuyama, and Yusuke Nojima. 2020. Effects of dominance resistant solutions on the performance of evolutionary multi-objective and many-objective algorithms. In GECCO '20: Genetic and Evolutionary Computation Conference, Cancún Mexico, July 8--12, 2020, Carlos Artemio Coello Coello (Ed.). ACM, 507--515. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hisao Ishibuchi, Lie Meng Pang, and Ke Shang. 2020. A New Framework of Evolutionary Multi-Objective Algorithms with an Unbounded External Archive. (2020).Google ScholarGoogle Scholar
  20. Hisao Ishibuchi, Lie Meng Pang, and Ke Shang. 2020. Solution Subset Selection for Final Decision Making in Evolutionary Multi-Objective Optimization. arXiv preprint arXiv.2006.08156 (2020).Google ScholarGoogle Scholar
  21. J. D. Knowles and D. W. Corne. 2003. Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Transactions on Evolutionary Computation 7 (2003), 100--116. Issue 2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. D. Knowles and D. W. Corne. 2004. Bounded Pareto archiving: theory and practice. In Metaheuristics for Multiobjective Optimisation. Springer, 39--64.Google ScholarGoogle Scholar
  23. M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. 2002. Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary computation 10 (2002), 263--282. Issue 3.Google ScholarGoogle Scholar
  24. Marco Laumanns, Eckart Zitzler, and Lothar Thiele. 2001. On the effects of archiving, elitism, and density based selection in evolutionary multi-objective optimization. In International Conference on Evolutionary Multi-Criterion Optimization. Springer, Berlin, Heidelberg, 181--196.Google ScholarGoogle ScholarCross RefCross Ref
  25. Miqing Li. 2021. Is Our Archiving Reliable? Multiobjective Archiving Methods on "Simple" Artificial Input Sequences. ACM Transactions on Evolutionary Learning and Optimization 1, 3 (2021), 1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Loridan. 1984. ∊-Solutions in Vector Minimization Problems. Journal of Optimization, Theory and Application 42 (1984), 265--276.Google ScholarGoogle ScholarCross RefCross Ref
  27. H. N. Luong and P. A. N. Bosnian. 2012. Elitist Archiving for Multi-Objective Evolutionary Algorithms: To Adapt or Not to Adapt. In Parallel Problem Solving from Nature - PPSN XII. Springer, Berlin, Heidelberg, 72--81.Google ScholarGoogle Scholar
  28. Lie Meng Pang, Hisao Ishibuchi, and Ke Shang. 2020. Algorithm Configurations of MOEA/D with an Unbounded External Archive. arXiv preprint arXiv.2007.13352 (2020).Google ScholarGoogle Scholar
  29. G. Rudolph. 1998. Finite Markov Chain results in evolutionary computation: A Tour d'Horizon. Fundamenta Informaticae 35 (1998), 67--89.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. G. Rudolph. 1998. On a multi-objective evolutionary algorithm and its convergence to the Pareto set. In IEEE International Conference on Evolutionary Computation (ICEC 1998). IEEE Press, 511--516.Google ScholarGoogle ScholarCross RefCross Ref
  31. G. Rudolph. 2001. Evolutionary Search under Partially Ordered Fitness Sets. In Proceedings of the International NAISO Congress on Information Science Innovations (ISI 2001). ICSC Academic Press, Sliedrecht, The Netherlands, 818--822.Google ScholarGoogle Scholar
  32. G. Rudolph and A. Agapie. 2000. Convergence Properties of Some Multi-Objective Evolutionary Algorithms. In Evolutionary Computation (CEC), 2011 IEEE Congress on. IEEE Press.Google ScholarGoogle Scholar
  33. G. Rudolph, B. Naujoks, and M. Preuss. 2006. Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets. In EMO '03: Proceedings of the Evolutionary Multi-Criterion Optimization Conference. 36--50.Google ScholarGoogle Scholar
  34. G. Rudolph, O. Schütze, C. Grimme, C. Domínguez-Medina, and H. Trautmann. 2016. Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results. Computational Optimization and Applications 64, 2 (01 Jun 2016), 589--618.Google ScholarGoogle Scholar
  35. G. Rudolph, H. Trautmann, S. Sengupta, and O. Schütze. 2013. Evenly Spaced Pareto Front Approximations for Tricriteria Problems Based on Triangulation. In Evolutionary Muti-Criterion Optimization Conference (EMO 2013). Springer, 443--458.Google ScholarGoogle Scholar
  36. S. Schaeffler, R. Schultz, and K. Weinzierl. 2002. Stochastic Method for the Solution of Unconstrained Vector Optimization Problems. Journal of Optimization Theory and Applications 114, 1 (2002), 209--222.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Oliver Schütze, Christian Domínguez-Medina, Nareli Cruz-Cortés, Luis Gerardo de la Fraga, Jian-Qiao Sun, Gregorio Toscano, and Ricardo Landa. 2016. A scalar optimization approach for averaged Hausdorff approximations of the Pareto front. Engineering Optimization 48, 9 (2016), 1593--1617.Google ScholarGoogle ScholarCross RefCross Ref
  38. O. Schütze, X. Esquivel, A. Lara, and C. A. Coello Coello. 2012. Using the averaged Hausdorff distance as a performance measure in evolutionary multi-objective optimization. IEEE Transactions on Evolutionary Computation 16, 4 (2012), 504--522.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. O. Schütze and C. Hernandez. 2021. Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms. Springer.Google ScholarGoogle Scholar
  40. O. Schütze, C. Hernandez, E-G. Talbi, J. Q. Sun, Y. Naranjani, and F. R. Xiong. 2019. Archivers for the Representation of the Set of Approximate Solutions for MOPs. Journal of Heuristics 5, 1 (2019), 71--105.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. O. Schütze, M. Laumanns, C. A. Coello Coello, M. Dellnitz, and E.-G. Talbi. 2008. Convergence of Stochastic Search Algorithms to Finite Size Pareto Set Approximations. Journal of Global Optimization 41, 4 (2008), 559--577.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. O. Schütze, M. Laumanns, E. Tantar, C. A. Coello Coello, and E.-G. Talbi. 2007. Convergence of stochastic search algorithms to gap-free Pareto front approximations. In Genetic and Evolutionary Computation Conference (GECCO-2007). 892--901.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. O. Schütze, M. Laumanns, E. Tantar, C. A. Coello Coello, and E.-G. Talbi. 2010. Computing gap free Pareto front approximations with stochastic search algorithms. Evolutionary Computation 18, 1 (2010), 65--96.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Oliver Schütze, Massimiliano Vasile, and Carlos A. Coello Coello. 2011. Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design. Journal of Aerospace Computing, Information, and Communication 8, 3 (2011), 53--70.Google ScholarGoogle ScholarCross RefCross Ref
  45. Rui Wang, Zhongbao Zhou, Hisao Ishibuchi, Tianjun Liao, and Tao Zhang. 2016. Localized weighted sum method for many-objective optimization. IEEE Transactions on Evolutionary Computation 22, 1 (2016), 3--18.Google ScholarGoogle ScholarCross RefCross Ref
  46. D. J. White. 1986. Epsilon efficiency. Journal of Optimization Theory and Applications 49, 2 (1986), 319--337.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Katrin Witting. 2012. Numerical Algorithms for the Treatment of Parametric Multiobjective Optimization Problems and Applications. Ph.D. Dissertation. PhD thesis, Deptartment of Mathematics, University of Paderborn.Google ScholarGoogle Scholar
  48. S. Zapotecas Martinez and C. A. Coello Coello. 2010. An archiving strategy based on the Convex Hull of Individual Minima for MOEAs. In Evolutionary Computation (CEC), 2010 IEEE Congress on. IEEE Press, 1--8.Google ScholarGoogle Scholar
  49. Saúl Zapotecas-Martínez, Antonio López-Jaimes, and Abel García-Nájera. 2019. Libea: A Lebesgue indicator-based evolutionary algorithm for multi-objective optimization. Swarm and Evolutionary Computation 44 (2019), 404--419.Google ScholarGoogle ScholarCross RefCross Ref
  50. Q. Zhang and H. Li. 2007. MOEA/D: A Multi-objective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation 11, 6 (2007), 712--731.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. 2000. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary computation 8, 2 (2000), 173--195.Google ScholarGoogle Scholar
  52. E. Zitzler, M. Laumanns, and L. Thiele. 2002. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), K.C. Giannakoglou et al. (Eds.). International Center for Numerical Methods in Engineering (CIMNE), 95--100.Google ScholarGoogle Scholar

Index Terms

  1. A bounded archive based for bi-objective problems based on distance and e-dominance to avoid cyclic behavior

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference
          July 2022
          1472 pages
          ISBN:9781450392372
          DOI:10.1145/3512290

          Copyright © 2022 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 8 July 2022

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate1,669of4,410submissions,38%

          Upcoming Conference

          GECCO '24
          Genetic and Evolutionary Computation Conference
          July 14 - 18, 2024
          Melbourne , VIC , Australia
        • Article Metrics

          • Downloads (Last 12 months)14
          • Downloads (Last 6 weeks)0

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader