skip to main content
10.1145/3512388.3512436acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicigpConference Proceedingsconference-collections
research-article

Channel-Spatial Attention Network for Lunar Image Super-Resolution

Authors Info & Claims
Published:28 March 2022Publication History

ABSTRACT

High-resolution images of the lunar surface are generally used to study the lunar soil and terrain. Nonetheless, acquiring higher-resolution images involves greater memory and calculation power, which is a challenge for lunar landers or rovers. In this study, a deep convolution neural network single image super-resolution reconstruction method based on channel-space attention is proposed to achieve the mapping of low-resolution lunar surface images to high-resolution lunar surface images. An enhanced block named feature fusion block is used for feature extraction. Furthermore, a channel-spatial attention module including efficient channel attention module and enhanced spatial attention module can extract more discriminative channel features and critical spatial features. Last, the model utilizes local implicit image function to predict RGB values of the images. The images of lander terrain camera and rover panoramic camera carried by Chang'e 3 and Chang'e 4 are used to training and validating models, and the Apollo rover images are used to test. The experiment demonstrates the superiority of the proposed novel model over the comparative method by using images of the Apollo project as the test dataset. Compared with the traditional methods, the PSNR value of the proposed method is improved by about 0.26dB in the 4x super-resolution reconstruction experiment.

References

  1. Maki, J. N., Gruel, D., McKinney, C., Ravine, M. A., Morales, M., Lee, D., Willson, R., Copley-Woods, D., Valvo, M., Goodsall, T., McGuire, J., Sellar, R. G., Schaffner, J. A., Caplinger, M. A., Shamah, J. M., Johnson, A. E., Ansari, H., Singh, K., Litwin, T., Deen, R., Culver, A., Ruoff, N., Petrizzo, D., Kessler, D., Basset, C., Estlin, T., Alibay, F., Nelessen, A. and Algermissen, S. The Mars 2020 Engineering Cameras and Microphone on the Perseverance Rover: A Next-Generation Imaging System for Mars Exploration. Space Sci Rev, 216, 8 (Dec 2020).Google ScholarGoogle Scholar
  2. Jia, Y. Z., Dai, S. W., Zou, Y. L. and Chen, X. W. An Overview of the Scientific Payloads in Chinese Chang'e-3 Lunar Mission. City, 2016.Google ScholarGoogle Scholar
  3. Jia, Y. Z., Zou, Y. L., Ping, J. S., Xue, C. B., Yan, J. and Ning, Y. M. The scientific objectives and payloads of Chang'E-4 mission. Planet Space Sci, 162 (Nov 1 2018), 207-215.Google ScholarGoogle ScholarCross RefCross Ref
  4. Wang, Z. H., Chen, J. and Hoi, S. C. H. Deep Learning for Image Super-Resolution: A Survey. Ieee T Pattern Anal, 43, 10 (Oct 1 2021), 3365-3387.Google ScholarGoogle Scholar
  5. Yang, J., Wright, J., Huang, T. S. and Ma, Y. Image super-resolution via sparse representation. IEEE Trans Image Process, 19, 11 (Nov 2010), 2861-2873.Google ScholarGoogle Scholar
  6. Chang, H., Yeung, D. Y. and Xiong, Y. Super-resolution through neighbor embedding. Proc Cvpr Ieee (2004), 275-282.Google ScholarGoogle ScholarCross RefCross Ref
  7. Kim, K. I. and Kwon, Y. Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior. Ieee T Pattern Anal, 32, 6 (Jun 2010), 1127-1133.Google ScholarGoogle Scholar
  8. Timofte, R., De Smet, V. and Van Gool, L. A plus : Adjusted Anchored Neighborhood Regression for Fast Super-Resolution. Lect Notes Comput Sc, 9006 (2015), 111-126.Google ScholarGoogle ScholarCross RefCross Ref
  9. Mahapatra, D., Bozorgtabar, B. and Garnavi, R. Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput Med Imag Grap, 71 (Jan 2019), 30-39.Google ScholarGoogle ScholarCross RefCross Ref
  10. Rasti, P., Uiboupin, T., Escalera, S. and Anbarjafari, G. Convolutional Neural Network Super Resolution for Face Recognition in Surveillance Monitoring. Articulated Motion and Deformable Objects, 9756 (2016), 175-184.Google ScholarGoogle ScholarCross RefCross Ref
  11. Tao, Y. and Muller, J. P. A novel method for surface exploration: Super-resolution restoration of Mars repeat-pass orbital imagery. Planet Space Sci, 121 (Feb 2016), 103-114.Google ScholarGoogle ScholarCross RefCross Ref
  12. Dong, C., Loy, C. C., He, K. M. and Tang, X. O. Image Super-Resolution Using Deep Convolutional Networks. Ieee T Pattern Anal, 38, 2 (Feb 2016), 295-307.Google ScholarGoogle Scholar
  13. Kim, J., Lee, J. K. and Lee, K. M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. 2016 Ieee Conference on Computer Vision and Pattern Recognition (Cvpr) (2016), 1646-1654.Google ScholarGoogle Scholar
  14. Tai, Y., Yang, J., Liu, X. M. and Xu, C. Y. MemNet: A Persistent Memory Network for Image Restoration. Ieee I Conf Comp Vis (2017), 4549-4557.Google ScholarGoogle Scholar
  15. Tai, Y., Yang, J. and Liu, X. M. Image Super-Resolution via Deep Recursive Residual Network. 30th Ieee Conference on Computer Vision and Pattern Recognition (Cvpr 2017) (2017), 2790-2798.Google ScholarGoogle ScholarCross RefCross Ref
  16. Kim, J., Lee, J. K. and Lee, K. M. Deeply-Recursive Convolutional Network for Image Super-Resolution. 2016 Ieee Conference on Computer Vision and Pattern Recognition (Cvpr) (2016), 1637-1645.Google ScholarGoogle Scholar
  17. Dong, C., Loy, C. C. and Tang, X. O. Accelerating the Super-Resolution Convolutional Neural Network. Computer Vision - Eccv 2016, Pt Ii, 9906 (2016), 391-407.Google ScholarGoogle Scholar
  18. Shi, W. Z., Caballero, J., Huszar, F., Totz, J., Aitken, A. P., Bishop, R., Rueckert, D. and Wang, Z. H. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. 2016 Ieee Conference on Computer Vision and Pattern Recognition (Cvpr) (2016), 1874-1883.Google ScholarGoogle Scholar
  19. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z. H. and Shi, W. Z. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. 30th Ieee Conference on Computer Vision and Pattern Recognition (Cvpr 2017) (2017), 105-114.Google ScholarGoogle ScholarCross RefCross Ref
  20. Lim, B., Son, S., Kim, H., Nah, S. and Lee, K. M. Enhanced Deep Residual Networks for Single Image Super-Resolution. Ieee Comput Soc Conf (2017), 1132-1140.Google ScholarGoogle Scholar
  21. Zhang, Y. L., Tian, Y. P., Kong, Y., Zhong, B. N. and Fu, Y. Residual Dense Network for Image Super-Resolution. 2018 Ieee/Cvf Conference on Computer Vision and Pattern Recognition (Cvpr) (2018), 2472-2481.Google ScholarGoogle Scholar
  22. Dai, T., Cai, J. R., Zhang, Y. B., Xia, S. T. and Zhang, L. Second-order Attention Network for Single Image Super-Resolution. 2019 Ieee/Cvf Conference on Computer Vision and Pattern Recognition (Cvpr 2019) (2019), 11057-11066.Google ScholarGoogle Scholar
  23. Lai, W. S., Huang, J. B., Ahuja, N. and Yang, M. H. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. 30th Ieee Conference on Computer Vision and Pattern Recognition (Cvpr 2017) (2017), 5835-5843.Google ScholarGoogle Scholar
  24. Haris, M., Shakhnarovich, G. and Ukita, N. Deep Back-Projection Networks For Super-Resolution. 2018 Ieee/Cvf Conference on Computer Vision and Pattern Recognition (Cvpr) (2018), 1664-1673.Google ScholarGoogle Scholar
  25. Ayhan, B. and Kwan, C. Mastcam Image Resolution Enhancement with Application to Disparity Map Generation for Stereo Images with Different Resolutions. Sensors-Basel, 19, 16 (Aug 20 2019).Google ScholarGoogle ScholarCross RefCross Ref
  26. Tao, Y., Conway, S. J., Muller, J. P., Putri, A. R. D., Thomas, N. and Cremonese, G. Single Image Super-Resolution Restoration of TGO CaSSIS Colour Images: Demonstration with Perseverance Rover Landing Site and Mars Science Targets. Remote Sens-Basel, 13, 9 (May 2021).Google ScholarGoogle Scholar
  27. Muqeet, A., Hwang, J., Yang, S., Kang, J. H., Kim, Y. and Bae, S.-H. Multi-attention Based Ultra Lightweight Image Super-Resolution. City, 2020.Google ScholarGoogle Scholar
  28. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W. and Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020), 11531-11539.Google ScholarGoogle Scholar
  29. Liu, J., Zhang, W. J., Tang, Y. T., Tang, J. and Wu, G. S. Residual Feature Aggregation Network for Image Super-Resolution. 2020 Ieee/Cvf Conference on Computer Vision and Pattern Recognition (Cvpr) (2020), 2356-2365.Google ScholarGoogle Scholar
  30. Woo, S. H., Park, J., Lee, J. Y. and Kweon, I. S. CBAM: Convolutional Block Attention Module. Computer Vision - Eccv 2018, Pt Vii, 11211 (2018), 3-19.Google ScholarGoogle Scholar
  31. Chen, Y., Liu, S. and Wang, X. Learning Continuous Image Representation with Local Implicit Image Function. City, 2021.Google ScholarGoogle Scholar
  32. Heo, B., Chun, S., Oh, S. J., Han, D., Yun, S., Kim, G., Uh, Y. and Ha, J.-W. AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights. City, 2020.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICIGP '22: Proceedings of the 2022 5th International Conference on Image and Graphics Processing
    January 2022
    391 pages
    ISBN:9781450395465
    DOI:10.1145/3512388

    Copyright © 2022 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 28 March 2022

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format