skip to main content
10.1145/3512676.3512713acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccmbConference Proceedingsconference-collections
research-article

Predictive model based on Machine Learning for the Supply Chain and its influence on the logistics management of car sales company

Published:28 March 2022Publication History

ABSTRACT

Without a doubt one of the greatest strengths that a country has is the production and exportation of raw materials and also finished products, but none of this would be possible without an optimized and automated supply chain in relation to logistics management, what this research aims to do is to present a smart supply chain model through a predictive algorithm of machine learning. After applying the predictive model, the obtained result showed that sales increased according to the type of car; Sedan 48.60%, Wagon 11.73% and Hatchback 32.52%. On the other hand, it is also observed that there is a marked relationship between variables 1 and 2 of 80.2%, and it is also observed that there is a relationship between variables 1 and 3 of 78.9%, and we also observed a relationship between variables 2 and 3 of 82.3%.

Skip Supplemental Material Section

Supplemental Material

file_ovalle.mp4

mp4

6.4 MB

References

  1. J. M. Velásquez, M. Khakifirooz, and F. Mahdi, Large Scale Optimization in Supply Chains and Smart Manufacturing, vol. 149. 2019.Google ScholarGoogle ScholarCross RefCross Ref
  2. Y. Leal, “Gestión Logística De Materiales En La Industria Petrolera Venezolana,” Rev. Enfoques, vol. 2, no. 5, pp. 16–34, 2018, doi: 10.33996/revistaenfoques.v2i5.27.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Calatayud and R. Katz, “Cadena de suministro 4.0: Mejores prácticas internacionales y hoja de ruta para América Latina,” Cadena Suminist. 4.0 Mejor. prácticas Int. y hoja ruta para América Lat., 2019, doi: 10.18235/0001956.Google ScholarGoogle ScholarCross RefCross Ref
  4. R. Toorajipour, V. Sohrabpour, A. Nazarpour, P. Oghazi, and M. Fischl, “Artificial intelligence in supply chain management: A systematic literature review,” J. Bus. Res., vol. 122, no. September 2020, pp. 502–517, 2021, doi: 10.1016/j.jbusres.2020.09.009.Google ScholarGoogle ScholarCross RefCross Ref
  5. A. Sener, M. Barut, A. Oztekin, M. Y. Avcilar, and M. B. Yildirim, “The role of information usage in a retail supply chain: A causal data mining and analytical modeling approach,” J. Bus. Res., vol. 99, pp. 87–104, Jun. 2019, doi: 10.1016/j.jbusres.2019.01.070.Google ScholarGoogle ScholarCross RefCross Ref
  6. K. Butner, The smarter supply chain of the future, vol. 38, no. 1. 2010.Google ScholarGoogle Scholar
  7. A. K. Chávez Valdivia, “Redesigning the ownership of artworks: Artificial and robotic intelligence,” Rev. Chil. Derecho y Tecnol., vol. 9, no. 2, pp. 153–185, 2021, doi: 10.5354/0719-2584.2020.57674.Google ScholarGoogle Scholar
  8. C. A. Paz, “Legal challenges for artificial intelligence in Chile,” Rev. Chil. Derecho y Tecnol., vol. 9, no. 2, pp. 257–290, 2021, doi: 10.5354/0719-2584.2020.54489.Google ScholarGoogle Scholar
  9. P. Ezanno , “Research perspectives on animal health in the era of artificial intelligence,” Vet. Res., vol. 52, no. 1, pp. 1–15, 2021, doi: 10.1186/s13567-021-00902-4.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Vázquez-Marrufo, E. Sarrias-Arrabal, M. García-Torres, R. Martín-Clemente, and G. Izquierdo, “A systematic review of the application of machine-learning algorithms in multiple sclerosis,” Neurologia, no. xxxx, 2021, doi: 10.1016/j.nrl.2020.10.017.Google ScholarGoogle Scholar
  11. D. J. Benavides, P. Arévalo, L. G. González, and L. Hernández, “Method of monitoring and detection of failures in PV system based on machine learning,” Rev. Fac. Ing. Univ. Antioquia, no. 102, pp. 26–43, 2021, doi: 10.17533/udea.redin.20200694.Google ScholarGoogle ScholarCross RefCross Ref
  12. S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman, “Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future,” IEEE Access, vol. 7, no. Ml, pp. 46317–46350, 2019, doi: 10.1109/ACCESS.2019.2909490.Google ScholarGoogle ScholarCross RefCross Ref
  13. R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, “Explainable Machine Learning for Scientific Insights and Discoveries,” IEEE Access, vol. 8, pp. 42200–42216, 2020, doi: 10.1109/ACCESS.2020.2976199.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Garbulowski , “R.ROSETTA: an interpretable machine learning framework,” BMC Bioinformatics, vol. 22, no. 1, pp. 1–18, 2021, doi: 10.1186/s12859-021-04049-z.Google ScholarGoogle ScholarCross RefCross Ref
  15. Y. Matsuzaka and Y. Uesawa, “A molecular image-based novel quantitative structure-activity relationship approach, deepsnap-deep learning and machine learning,” Curr. Issues Mol. Biol., vol. 42, pp. 455–472, 2021, doi: 10.21775/cimb.042.455.Google ScholarGoogle Scholar
  16. J. M. Velásquez, M. Khakifirooz, and F. Mahdi, Large Scale Optimization in Supply Chains and Smart Manufacturing, vol. 149. 2019.Google ScholarGoogle ScholarCross RefCross Ref
  17. Y. Leal, “Gestión Logística De Materiales En La Industria Petrolera Venezolana,” Rev. Enfoques, vol. 2, no. 5, pp. 16–34, 2018, doi: 10.33996/revistaenfoques.v2i5.27.Google ScholarGoogle ScholarCross RefCross Ref
  18. A. Calatayud and M. F. Millan, “ALC 2030: Construyendo las cadenas de suministro del futuro,” ALC 2030 Construyendo las cadenas Suminist. del Futur., 2019, doi: 10.18235/0001969.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Toorajipour, V. Sohrabpour, A. Nazarpour, P. Oghazi, and M. Fischl, “Artificial intelligence in supply chain management: A systematic literature review,” J. Bus. Res., vol. 122, no. September 2020, pp. 502–517, 2021, doi: 10.1016/j.jbusres.2020.09.009Google ScholarGoogle ScholarCross RefCross Ref
  20. A. Sener, M. Barut, A. Oztekin, M. Y. Avcilar, and M. B. Yildirim, “The role of information usage in a retail supply chain: A causal data mining and analytical modeling approach,” J. Bus. Res., vol. 99, pp. 87–104, Jun. 2019, doi: 10.1016/j.jbusres.2019.01.070.Google ScholarGoogle ScholarCross RefCross Ref
  21. K. Butner, The smarter supply chain of the future, vol. 38, no. 1. 2010.Google ScholarGoogle Scholar
  22. A. K. Chávez Valdivia, “Redesigning the ownership of artworks: Artificial and robotic intelligence,” Rev. Chil. Derecho y Tecnol., vol. 9, no. 2, pp. 153–185, 2021, doi: 10.5354/0719-2584.2020.57674.Google ScholarGoogle Scholar
  23. C. A. Paz, “Legal challenges for artificial intelligence in Chile,” Rev. Chil. Derecho y Tecnol., vol. 9, no. 2, pp. 257–290, 2021, doi: 10.5354/0719-2584.2020.54489.Google ScholarGoogle Scholar
  24. P. Ezanno , “Research perspectives on animal health in the era of artificial intelligence,” Vet. Res., vol. 52, no. 1, pp. 1–15, 2021, doi: 10.1186/s13567-021-00902-4.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. Vázquez-Marrufo, E. Sarrias-Arrabal, M. García-Torres, R. Martín-Clemente, and G. Izquierdo, “A systematic review of the application of machine-learning algorithms in multiple sclerosis,” Neurologia, no. xxxx, 2021, doi: 10.1016/j.nrl.2020.10.017.Google ScholarGoogle Scholar
  26. D. J. Benavides, P. Arévalo, L. G. González, and L. Hernández, “Method of monitoring and detection of failures in PV system based on machine learning,” Rev. Fac. Ing. Univ. Antioquia, no. 102, pp. 26–43, 2021, doi: 10.17533/udea.redin.20200694.Google ScholarGoogle ScholarCross RefCross Ref
  27. S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman, “Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future,” IEEE Access, vol. 7, no. Ml, pp. 46317–46350, 2019, doi: 10.1109/ACCESS.2019.2909490.Google ScholarGoogle ScholarCross RefCross Ref
  28. R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, “Explainable Machine Learning for Scientific Insights and Discoveries,” IEEE Access, vol. 8, pp. 42200–42216, 2020, doi: 10.1109/ACCESS.2020.2976199.Google ScholarGoogle ScholarCross RefCross Ref
  29. . Garbulowski , “R.ROSETTA: an interpretable machine learning framework,” BMC Bioinformatics, vol. 22, no. 1, pp. 1–18, 2021, doi: 10.1186/s12859-021-04049-z.Google ScholarGoogle ScholarCross RefCross Ref
  30. Y. Matsuzaka and Y. Uesawa, “A molecular image-based novel quantitative structure-activity relationship approach, deepsnap-deep learning and machine learning,” Curr. Issues Mol. Biol., vol. 42, pp. 455–472, 2021, doi: 10.21775/cimb.042.455.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICCMB '22: Proceedings of the 2022 5th International Conference on Computers in Management and Business
    January 2022
    219 pages
    ISBN:9781450387422
    DOI:10.1145/3512676

    Copyright © 2022 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 28 March 2022

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)35
    • Downloads (Last 6 weeks)4

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format