skip to main content
10.1145/3514221.3522561acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
tutorial

An Introduction to Federated Computation

Published: 11 June 2022 Publication History

Abstract

Federated Computation is an emerging area that seeks to provide stronger privacy for user data, by performing large scale, distributed computations where the data remains in the hands of users. Only the necessary summary information is shared, and additional security and privacy tools can be employed to provide strong guarantees of secrecy. The most prominent application of federated computation is in training machine learning models (federated learning), but many additional applications are emerging, more broadly relevant to data management and querying data. This tutorial gives an overview of federated computation models and algorithms. It includes an introduction to security and privacy techniques and guarantees, and shows how they can be applied to solve a variety of distributed computations providing statistics and insights to distributed data. It also discusses the issues that arise when implementing systems to support federated computation, and open problems for future research.

References

[1]
E. Bagdasaryan, P. Kairouz, S. Mellem, A. Gascón, K. A. Bonawitz, D. Estrin, and M. Gruteser. Towards sparse federated analytics: Location heatmaps under distributed differential privacy with secure aggregation. CoRR, abs/2111.02356, 2021.
[2]
R. B. Basat, M. Mitzenmacher, and S. Vargaftik. How to send a real number using a single bit (and some shared randomness). In 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12--16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 25:1--25:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
[3]
K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth. Practical secure aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS '17, page 1175--1191, 2017.
[4]
D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai. Lightweight techniques for private heavy hitters. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24--27 May 2021, pages 762--776. IEEE, 2021.
[5]
G. Cormode and I. L. Markov. Bit-efficient numerical aggregation and stronger privacy for trust in federated analytics. CoRR, abs/2108.01521, 2021.
[6]
G. Cormode and K. Yi. Small Summaries for Big Data. CUP, 2020.
[7]
C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3--4):211--407, 2014.
[8]
P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. A. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. L. D'Oliveira, H. Eichner, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascó n, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konevc ný, A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Ö zgü r, R. Pagh, H. Qi, D. Ramage, R. Raskar, M. Raykova, D. Song, W. Song, S. U. Stich, Z. Sun, A. T. Suresh, F. Tramè r, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao. Advances and open problems in federated learning. Found. Trends Mach. Learn., 14(1--2):1--210, 2021.
[9]
B. Knott, S. Venkataraman, A. Y. Hannun, S. Sengupta, M. Ibrahim, and L. van der Maaten. Crypten: Secure multi-party computation meets machine learning. CoRR, abs/2109.00984, 2021.
[10]
Y. Lindell. Secure multiparty computation. Commun. ACM, 64(1):86--96, Dec. 2020.
[11]
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20--22 April 2017, Fort Lauderdale, FL, USA, volume 54 of Proceedings of Machine Learning Research, pages 1273--1282. PMLR, 2017.
[12]
J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. M. Esmaeili, and D. Huba. Federated learning with buffered asynchronous aggregation. CoRR, abs/2106.06639, 2021.
[13]
D. Ravichandran and S. Vasilvitskii. Evaluation of cohort algorithms for the FLoC API. https://github.com/google/ads-privacy/blob/master/proposals/FLoC/FLOC-Whitepaper-Google.pdf, 2021.
[14]
R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, October 12--16, 2015, pages 1310--1321. ACM, 2015.
[15]
Tensorflow federated. https://www.tensorflow.org/federated, 2021.
[16]
S. Vassilvitskii. Mapreduce algorithmics. In Algorithms and Data Structures - 13th International Symposium, WADS, volume 8037 of Lecture Notes in Computer Science, page 524. Springer, 2013.
[17]
N. Wang, X. Xiao, Y. Yang, J. Zhao, S. C. Hui, H. Shin, J. Shin, and G. Yu. Collecting and analyzing multidimensional data with local differential privacy. In 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao, China, April 8--11, 2019, pages 638--649. IEEE, 2019.
[18]
W. Zhu, P. Kairouz, B. McMahan, H. Sun, and W. Li. Federated heavy hitters discovery with differential privacy. In The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26--28 August 2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning Research, pages 3837--3847. PMLR, 2020.

Cited By

View all
  • (2024)An Experimental Study on Federated Equi-JoinsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.337502836:9(4443-4457)Online publication date: 12-Mar-2024
  • (2024)Federated Submodular Maximization With Differential PrivacyIEEE Internet of Things Journal10.1109/JIOT.2023.332480111:2(1827-1839)Online publication date: 15-Jan-2024
  • (2023)RAGraph: A Region-Aware Framework for Geo-Distributed Graph ProcessingProceedings of the VLDB Endowment10.14778/3632093.363209417:3(264-277)Online publication date: 1-Nov-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD '22: Proceedings of the 2022 International Conference on Management of Data
June 2022
2597 pages
ISBN:9781450392495
DOI:10.1145/3514221
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 June 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. distributed computation
  2. federated analytics
  3. federated computation
  4. federated learning
  5. privacy

Qualifiers

  • Tutorial

Conference

SIGMOD/PODS '22
Sponsor:

Acceptance Rates

Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)55
  • Downloads (Last 6 weeks)4
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An Experimental Study on Federated Equi-JoinsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.337502836:9(4443-4457)Online publication date: 12-Mar-2024
  • (2024)Federated Submodular Maximization With Differential PrivacyIEEE Internet of Things Journal10.1109/JIOT.2023.332480111:2(1827-1839)Online publication date: 15-Jan-2024
  • (2023)RAGraph: A Region-Aware Framework for Geo-Distributed Graph ProcessingProceedings of the VLDB Endowment10.14778/3632093.363209417:3(264-277)Online publication date: 1-Nov-2023
  • (2023)FEAST: A Communication-efficient Federated Feature Selection Framework for Relational DataProceedings of the ACM on Management of Data10.1145/35889611:1(1-28)Online publication date: 30-May-2023
  • (2023)Applications of Sketching and Pathways to ImpactProceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems10.1145/3584372.3589937(5-10)Online publication date: 18-Jun-2023
  • (2023)Federated computation: a survey of concepts and challengesDistributed and Parallel Databases10.1007/s10619-023-07438-w42:3(299-335)Online publication date: 23-Nov-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media