Constant-Round Near-Optimal Spanners in Congested Clique
Abstract
Supplementary Material
- Download
- 929.81 MB
References
Index Terms
- Constant-Round Near-Optimal Spanners in Congested Clique
Recommendations
Constant-Round Spanners and Shortest Paths in Congested Clique and MPC
PODC'21: Proceedings of the 2021 ACM Symposium on Principles of Distributed ComputingIn this work we present the first constant-round algorithms for computing spanners and approximate All-Pairs Shortest Paths (APSP) in the distributed CONGESTED CLIQUE model. Specifically, we show the following results for undirected n-node graphs. ulFor ...
Tree spanners on chordal graphs: complexity and algorithms
A tree t-spanner T in a graph G is a spanning tree of G such that the distance in T between every pair of vertices is at most t times their distance in G. The TREE t-SPANNER problem asks whether a graph admits a tree t-spanner, given t. We substantially ...
Almost-Optimal Sublinear Additive Spanners
STOC 2023: Proceedings of the 55th Annual ACM Symposium on Theory of ComputingGiven an undirected unweighted graph G = (V, E) on n vertices and m edges, a subgraph H⊆ G is a spanner of G with stretch function f: ℝ+ → ℝ+, iff for every pair s, t of vertices in V, distH(s, t)≤ f(distG(s, t)). When f(d) = d + o(d), H is called a ...
Comments
Information & Contributors
Information
Published In
Sponsors
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
Funding Sources
Conference
Acceptance Rates
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 165Total Downloads
- Downloads (Last 12 months)41
- Downloads (Last 6 weeks)15
Other Metrics
Citations
Cited By
View allView Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in