skip to main content
10.1145/3520495.3520511acmotherconferencesArticle/Chapter ViewAbstractPublication PagesozchiConference Proceedingsconference-collections
research-article

Towards Designing Immersive Geovisualisations: Literature Review and Recommendations for Future Research

Published:15 September 2022Publication History

ABSTRACT

Geological fieldwork forms an integral part of science discovery, exploration, and learning in many geoscientific domains. Yet, there are barriers that can hinder its practice. To address this, prior research has investigated immersive geovisualisations, however, there is no consensus on the types of interaction tools and techniques that should be used. We have conducted a literature review of 31 papers and present the visualisation environments, interaction tools and techniques, and evaluation methods from this last decade. We found a lack of established taxonomy for visualisation environments; an absence of thorough reports on interaction tools and techniques; and a lack of use of relevant human-computer interaction (HCI) theories and user-centered approaches. This review contributes towards the development of a design framework as we propose a basic taxonomy; demonstrate the need for holistic records of user interactions; and highlight the need for HCI evaluation methods. Addressing these gaps will facilitate future innovation in the emerging field of immersive geovisualisations.

References

  1. Alias Abdul-Rahman and Morakot Pilouk. 2008. 2D and 3D Spatial Data Representations. Springer Berlin Heidelberg, 25–42. https://doi.org/10.1007/978-3-540-74167-1_3Google ScholarGoogle Scholar
  2. Dohyun Ahn, Youngnam Seo, Minkyung Kim, Joung Huem Kwon, Younbo Jung, Jungsun Ahn, and Doohwang Lee. 2014. The Effects of Actual Human Size Display and Stereoscopic Presentation on Users’ Sense of Being Together with and of Psychological Immersion in a Virtual Character. Cyberpsychology, Behavior, and Social Networking 17, 7(2014), 483–487. https://doi.org/10.1089/cyber.2013.0455Google ScholarGoogle ScholarCross RefCross Ref
  3. Varvara Antoniou, Fabio Luca Bonali, Paraskevi Nomikou, Alessandro Tibaldi, Paraskevas Melissinos, Federico Pasquaré Mariotto, Fabio Roberto Vitello, Mel Krokos, and Malcolm Whitworth. 2020. Integrating virtual reality and gis tools for geological mapping, data collection and analysis: An example from the metaxa mine, santorini (Greece). Applied Sciences (Switzerland) 10, 23 (2020), 1–27. https://doi.org/10.3390/app10238317Google ScholarGoogle Scholar
  4. Alexandra L. Boghosian, Martin J. Pratt, Maya K. Becker, S. Isabel Cordero, Tejendra Dhakal, Jonathan Kingslake, Caitlin D. Locke, Kirsty J. Tinto, and Robin E. Bell. 2019. Inside the ice shelf: using augmented reality to visualise 3D lidar and radar data of Antarctica. Photogrammetric Record 34, 168 (2019), 346–364. https://doi.org/10.1111/phor.12298Google ScholarGoogle ScholarCross RefCross Ref
  5. Andreas P. Briner, Heino Kronenberg, Martin Mazurek, Helmut Horn, Martin Engi, and Tjerk Peters. 1999. FieldBook and GeoDatabase: Tools for field data acquisition and analysis. Computers and Geosciences 25, 10 (1999), 1101–1111. https://doi.org/10.1016/S0098-3004(99)00078-3Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. John Seely Brown, Allan Collins, and Paul Duguid. 1989. Situated cognition and the culture of learning. Educational researcher 18, 1 (1989), 32–42. https://doi.org/10.2307/1176008Google ScholarGoogle Scholar
  7. Simon J Buckley, John A Howell, Nicole Naumann, Conor Lewis, Magda Chmielewska, Joris Vanbiervliet, Bowei Tong, Oliver S Mulelid-tynes, Dylan Foster, and Gail Maxwell. 2021. V3Geo : A cloud-based repository for virtual 3D models in geoscience. Geoscience Communications preprint, October (2021). https://doi.org/10.5194/gc-2021-30Google ScholarGoogle Scholar
  8. Wolfgang Büschel, Jian Chen, Raimund Dachselt, Steven Drucker, Tim Dwyer, Carsten Görg, Tobias Isenberg, Andreas Kerren, Chris North, and Wolfgang Stuerzlinger. 2018. Interaction for Immersive Analytics. In Immersive Analytics. Lecture Notes in Computer Science, Kim Marriott, Falk Schreiber, Tim Dwyer, Karsten Klein, Nathalie Henry Riche, Takayuki Itoh, Wolfgang Stuerzlinger, and Bruce H. Thomas (Eds.). Vol. 11190 LNCS. Springer, Cham, Chapter Interactio, 95–138. https://doi.org/10.1007/978-3-030-01388-2_4Google ScholarGoogle Scholar
  9. Keith A Butler, Robert JK Jacob, and Bonnie E John. 1995. Introduction and overview to human-computer interaction. In Conference Companion on Human Factors in Computing Systems. 345. https://doi.org/10.1145/632716.632781Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Onur Çalişkan. 2011. Virtual field trips in education of earth and environmental sciences. In Procedia - Social and Behavioral Sciences, Vol. 15. Elsevier Ltd, 3239–3243. https://doi.org/10.1016/j.sbspro.2011.04.278Google ScholarGoogle ScholarCross RefCross Ref
  11. Polona Caserman, Augusto Garcia-Agundez, Alvar Gámez Zerban, and Stefan Göbel. 2021. Cybersickness in current-generation virtual reality head-mounted displays: systematic review and outlook. Virtual Reality 25, 4 (2021), 1153–1170. https://doi.org/10.1007/s10055-021-00513-6Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Science Education Resource Center. 2021. Teaching Geoscience Online. https://serc.carleton.edu/teachearth/teach_geo_online/index.htmlGoogle ScholarGoogle Scholar
  13. Tom Chandler, Thomas Morgan, and Torsten Wolfgang Kuhlen. 2018. Exploring Immersive Analytics for Built Environments. Springer International Publishing, Cham, 331–357. https://doi.org/10.1007/978-3-030-01388-2_11Google ScholarGoogle Scholar
  14. Shao Chen Chang, Ting Chia Hsu, and Morris Siu Yung Jong. 2020. Integration of the peer assessment approach with a virtual reality design system for learning earth science. Computers and Education 146, 2020 (2020), 103758. https://doi.org/10.1016/j.compedu.2019.103758Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Damien Clergeaud and Pascal Guitton. 2017. Design of an annotation system for taking notes in virtual reality. In 2017 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON). IEEE, 1–4. https://hal.archives-ouvertes.fr/hal-01536680Google ScholarGoogle Scholar
  16. Anthony David Cliffe. 2017. A review of the benefits and drawbacks to virtual field guides in today’s Geoscience higher education environment. International Journal of Educational Technology in Higher Education 14, 1(2017), 1–14. https://doi.org/10.1186/s41239-017-0066-xGoogle ScholarGoogle ScholarCross RefCross Ref
  17. Angela L. Coe, Tom W. Argles, David A. Rothery, and Robert A. Spicer. 2010. Geological Field Techniques. John Wiley and Sons Inc., Hoboken, UNITED KINGDOM. https://doi.org/10.2113/econgeo.106.1.159Google ScholarGoogle Scholar
  18. Tobias Czauderna, Jason Haga, Jinman Kim, Matthias Klapperstück, Karsten Klein, Torsten Kuhlen, Steffen Oeltze-Jafra, Björn Sommer, and Falk Schreiber. 2018. Immersive Analytics Applications in Life and Health Sciences. Springer International Publishing, Cham, 289–330. https://doi.org/10.1007/978-3-030-01388-2_10Google ScholarGoogle Scholar
  19. Caitlin Dempsey. 2021. What is GIS?https://www.gislounge.com/what-is-gis/Google ScholarGoogle Scholar
  20. Chunyan Deng, Zhiguo Zhou, Wenqing Li, and Boyu Hou. 2016. A Panoramic Geology Field Trip System Using Image-Based Rendering. In IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), Vol. 2. IEEE, 264–268. https://doi.org/10.1109/COMPSAC.2016.33Google ScholarGoogle ScholarCross RefCross Ref
  21. Milan Doležal, Jiří Chmelik, and Fotis Liarokapis. 2017. An immersive virtual environment for collaborative geovisualization. In 9th International Conference on Virtual Worlds and Games for Serious Applications. 272–275. https://doi.org/10.1109/VS-GAMES.2017.8056613Google ScholarGoogle ScholarCross RefCross Ref
  22. Glenn Dolphin, Alex Dutchak, Brandon Karchewski, and Jon Cooper. 2019. Virtual field experiences in introductory geology: Addressing a capacity problem, but finding a pedagogical one. Journal of Geoscience Education 67, 2 (2019), 114–130. https://doi.org/10.1080/10899995.2018.1547034Google ScholarGoogle ScholarCross RefCross Ref
  23. Weihua Dong, Tianyu Yang, Hua Liao, and Liqiu Meng. 2020. How does map use differ in virtual reality and desktop-based environments?International Journal of Digital Earth 13, 12 (2020), 1484–1503. https://doi.org/10.1080/17538947.2020.1731617Google ScholarGoogle Scholar
  24. Tim Dwyer, Kim Marriott, Tobias Isenberg, Karsten Klein, Nathalie Riche, Falk Schreiber, Wolfgang Stuerzlinger, and Bruce Thomas. 2018. Immersive Analytics : An Introduction. In Immersive Analytics, Kim Marriott, Falk Schreiber, Tim Dwyer, Karsten Klein, Nathalie Henry Riche, Takayuki Itoh, Wolfgang Stuerzlinger, and Bruce H. Thomas (Eds.). Springer, Cham, Chapter Immersive, 1–23. https://doi.org/10.1007/978-3-030-01388-2Google ScholarGoogle Scholar
  25. Joe T. Elkins and Nichole M.L. Elkins. 2007. Teaching geology in the field: Significant geoscience concept gains in entirely field-based introductory geology courses. Journal of Geoscience Education 55, 2 (2007), 126–132. https://doi.org/10.5408/1089-9995-55.2.126Google ScholarGoogle ScholarCross RefCross Ref
  26. Lin Fu, Jun Zhu, Weilian Li, Qing Zhu, Bingli Xu, Yakun Xie, Yunhao Zhang, Ya Hu, Jingtao Lu, Pei Dang, and Jigang You. 2021. Tunnel vision optimization method for VR flood scenes based on Gaussian blur. International Journal of Digital Earth(2021). https://doi.org/10.1080/17538947.2021.1886359Google ScholarGoogle Scholar
  27. Markus Funk, Florian Müller, Marco Fendrich, Megan Shene, Moritz Kolvenbach, Niclas Dobbertin, Sebastian Günther, and Max Mühlhäuser. 2019. Assessing the Accuracy of Point & Teleport Locomotion with Orientation Indication for Virtual Reality using Curved Trajectories. Conference on Human Factors in Computing Systems - ProceedingsChi (2019), 1–12. https://doi.org/10.1145/3290605.3300377Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Fabrizio Galeazzi, Marco Callieri, Matteo Dellepiane, Michael Charno, Julian Richards, and Roberto Scopigno. 2016. Web-based visualization for 3D data in archaeology: The ADS 3D viewer. Journal of Archaeological Science: Reports 9, 2352-409X (2016), 1–11. https://doi.org/10.1016/j.jasrep.2016.06.045Google ScholarGoogle ScholarCross RefCross Ref
  29. Nicolás F. Gazcón, Juan M. Trippel Nagel, Ernesto A. Bjerg, and Silvia M. Castro. 2018. Fieldwork in Geosciences assisted by ARGeo: A mobile Augmented Reality system. Computers and Geosciences 121, September (2018), 30–38. https://doi.org/10.1016/j.cageo.2018.09.004Google ScholarGoogle ScholarCross RefCross Ref
  30. Ilario Gabriele Gerloni, Vincenza Carchiolo, Fabio Roberto Vitello, Eva Sciacca, Ugo Becciani, Alessandro Costa, Simone Riggi, Fabio Luca Bonali, Elena Russo, Luca Fallati, Fabio Marchese, and Alessandro Tibaldi. 2018. Immersive virtual reality for earth sciences. In Federated Conference on Computer Science and Information Systems, Vol. 15. Polish Information Processing Society, 527–534. https://doi.org/10.15439/2018F139Google ScholarGoogle ScholarCross RefCross Ref
  31. Sam Giles, Chris Jackson, and Natasha Stephen. 2020. Barriers to fieldwork in undergraduate geoscience degrees. Nature Reviews Earth & Environment 1, 2 (2020), 77–78. https://doi.org/10.1038/s43017-020-0022-5Google ScholarGoogle ScholarCross RefCross Ref
  32. Daniel David Gregory, Heidi Elizabeth Tomes, Sofia L. Panasiuk, and A. Julia Andersen. 2021. Building an online field course using digital and physical tools including VR field sites and virtual core logging. Journal of Geoscience Education 0, 0 (2021), 1–16. https://doi.org/10.1080/10899995.2021.1946361Google ScholarGoogle Scholar
  33. Maria C R Harrington, Zack Bledsoe, Chris Jones, James Miller, and Thomas Pring. 2021. Designing a Virtual Arboretum as an Immersive, Multimodal, Interactive, Data Visualization Virtual Field Trip. Multimodal Technology Interaction 5, 18 (2021), 1–25. https://doi.org/10.3390/mti5040018Google ScholarGoogle Scholar
  34. Mahmoud Haydar, David Roussel, Madjid Maïdi, Samir Otmane, and Malik Mallem. 2011. Virtual and augmented reality for cultural computing and heritage: A case study of virtual exploration of underwater archaeological sites (preprint). Virtual Reality 15, 4 (2011), 311–327. https://doi.org/10.1007/s10055-010-0176-4Google ScholarGoogle ScholarCross RefCross Ref
  35. Carolin Helbig, Hans Stefan Bauer, Karsten Rink, Volker Wulfmeyer, Michael Frank, and Olaf Kolditz. 2014. Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches. Environmental Earth Sciences 72, 10 (2014), 3767–3780. https://doi.org/10.1007/s12665-014-3136-6Google ScholarGoogle ScholarCross RefCross Ref
  36. Florian Hruby, Rainer Ressl, and Genghis de la Borbolla del Valle. 2019. Geovisualization with immersive virtual environments in theory and practice. International Journal of Digital Earth 12, 2 (2019), 123–136. https://doi.org/10.1080/17538947.2018.1501106Google ScholarGoogle ScholarCross RefCross Ref
  37. Jiawei Huang, Melissa S. Lucash, Mark B. Simpson, Casey Helgeson, and Alexander Klippel. 2019. Visualizing natural environments from data in virtual reality: Combining realism and uncertainty. In 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019 - Proceedings. Osaka, Japan, 1485–1488. https://doi.org/10.1109/VR.2019.8797996Google ScholarGoogle ScholarCross RefCross Ref
  38. David A B Hyde, Tyler R Hall, and Jef Caers. 2018. VRGE : An Immersive Visualization Application for the Geosciences. In 2018 IEEE Scientific Visualization Conference (SciVis). IEEE, 16–20. https://doi.org/10.1109/SciVis.2018.8823763Google ScholarGoogle ScholarCross RefCross Ref
  39. M. Janiszewski, L. Uotinen, M. Szydlowska, H. Munukka, J. Dong, and M. Rinne. 2021. Visualization of 3D rock mass properties in underground tunnels using extended reality. IOP Conf. Ser.: Earth Environ. Sci. 703, 1 (2021), 012046. https://doi.org/10.1088/1755-1315/703/1/012046Google ScholarGoogle Scholar
  40. Sukonmeth Jitmahantakul and Piyaphong Chenrai. 2019. Applying virtual reality technology to geoscience classrooms. Review of International Geographical Education Online 9, 3(2019), 577–590. https://doi.org/10.33403/rigeo.592771Google ScholarGoogle Scholar
  41. Mina C. Johnson‐Glenberg, David Birchfield, and Sibel Usyal. 2009. SMALLab: virtual geology studies using embodied learning with motion, sound, and graphics. Educational Media International 46, 4 (Dec 2009), 267–280. https://doi.org/10.1080/09523980903387555Google ScholarGoogle ScholarCross RefCross Ref
  42. Chris King. 2008. Geoscience education: An overview. Studies in Science Education 44, 2 (2008), 187–222. https://doi.org/10.1080/03057260802264289Google ScholarGoogle ScholarCross RefCross Ref
  43. Alexander Klippel, Jiayan Zhao, Kathy Lou Jackson, Peter La Femina, Chris Stubbs, Ryan Wetzel, Jordan Blair, Jan Oliver Wallgrün, and Danielle Oprean. 2019. Transforming Earth Science Education Through Immersive Experiences: Delivering on a Long Held Promise. Journal of Educational Computing Research 57, 7 (2019), 1745–1771. https://doi.org/10.1177/0735633119854025Google ScholarGoogle ScholarCross RefCross Ref
  44. Alexander Klippel, Jiayan Zhao, Danielle Oprean, Jan Oliver Wallgrün, Chris Stubbs, Peter La Femina, and Kathy L. Jackson. 2020. The value of being there: toward a science of immersive virtual field trips. Virtual Reality 24, 4 (2020), 753–770. https://doi.org/10.1007/s10055-019-00418-5Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Pascal Knierim, Thomas Kosch, Johannes Groschopp, and Albrecht Schmidt. 2020. Opportunities and Challenges of Text Input in Portable Virtual Reality. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. 1–8. https://doi.org/10.1145/3334480.3382920Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Tom Kwasnitschka, Thor H. Hansteen, Colin W. Devey, and Steffen Kutterolf. 2013. Doing fieldwork on the seafloor: Photogrammetric techniques to yield 3D visual models from ROV video. Computers and Geosciences 52, 0098-3004 (2013), 218–226. https://doi.org/10.1016/j.cageo.2012.10.008Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Sangho Lee, Jangwon Suh, and Hyeong Dong Park. 2015. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology. Computers and Geosciences 76 (2015), 41–49. http://dx.doi.org/10.1016/j.cageo.2014.12.005Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Ching Rong Lin, R. Bowen Loffin, and Tracy Stark. 1998. Virtual reality for geosciences visualization. In 3rd Asia Pacific Computer Human Interaction, APCHI 1998. APCHI, 196–201. https://doi.org/10.1109/APCHI.1998.704208Google ScholarGoogle Scholar
  49. Kate Litherland and Tim A. Stott. 2012. Virtual Field Sites: Losses and gains in authenticity with semantic technologies. Technology, Pedagogy and Education 21, 2 (2012), 213–230. https://doi.org/10.1080/1475939X.2012.697773Google ScholarGoogle ScholarCross RefCross Ref
  50. Mona Lütjens, Thomas P. Kersten, Boris Dorschel, and Felix Tschirschwitz. 2019. Virtual reality in cartography: Immersive 3D visualization of the arctic clyde inlet (canada) using digital elevation models and bathymetric data. Multimodal Technologies and Interaction 3, 1 (2019). https://doi.org/10.3390/mti3010009Google ScholarGoogle Scholar
  51. Cathryn A. Manduca and Kim A. Kastens. 2012. Geoscience and geoscientists: Uniquely equipped to study Earth. In Earth and Mind II: A Synthesis of Research on Thinking and Learning in the Geosciences. Geological Society of America. https://doi.org/10.1130/2012.2486(01)Google ScholarGoogle ScholarCross RefCross Ref
  52. Kim Marriott, Jian Chen, Marcel Hlawatsch, Takayuki Itoh, Miguel A. Nacenta, Guido Reina, and Wolfgang Stuerzlinger. 2018. Just 5 Questions: Toward a Design Framework for Immersive Analytics. Springer International Publishing, Cham, 259–288. https://doi.org/10.1007/978-3-030-01388-2_9Google ScholarGoogle Scholar
  53. A. M. Martínez-Graña, J. L. Goy, and C. A. Cimarra. 2013. A virtual tour of geological heritage: Valourising geodiversity using google earth and QR code. Computers and Geosciences 61, 2013 (2013), 83–93. https://doi.org/10.1016/j.cageo.2013.07.020Google ScholarGoogle ScholarCross RefCross Ref
  54. Dylan Mathiesen, Trina Myers, Ian Atkinson, and Jarrod Trevathan. 2012. Geological visualisation with augmented reality. In 15th International Conference on Network-Based Information Systems. IEEE, 172–179. https://doi.org/10.1109/NBiS.2012.199Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Chris Mead, Sanlyn Buxner, Geoffrey Bruce, Wendy Taylor, Steven Semken, and Ariel D. Anbar. 2019. Immersive, interactive virtual field trips promote science learning. Journal of Geoscience Education 67, 2 (2019), 131–142. https://doi.org/10.1080/10899995.2019.1565285Google ScholarGoogle ScholarCross RefCross Ref
  56. David W. Mogk and Charles Goodwin. 2012. Learning in the field: Synthesis of research on thinking and learning in the geosciences. Special Paper of the Geological Society of America 486, Aug(2012), 131–163. https://doi.org/10.1130/2012.2486(24)Google ScholarGoogle Scholar
  57. Lisa Mol and Chris Atchison. 2019. Image is everything: educator awareness of perceived barriers for students with physical disabilities in geoscience degree programs. Journal of Geography in Higher Education 43, 4 (2019), 544–567. https://doi.org/10.1080/03098265.2019.1660862Google ScholarGoogle ScholarCross RefCross Ref
  58. Elena Novak, Rim Razzouk, and Tristan E Johnson. 2012. The educational use of social annotation tools in higher education: A literature review. The Internet and Higher Education 15, 1 (2012), 39–49. https://doi.org/10.1016/j.iheduc.2011.09.002Google ScholarGoogle ScholarCross RefCross Ref
  59. Catherine S Oh, Jeremy N Bailenson, and Gregory F Welch. 2018. A systematic review of social presence: Definition, antecedents, and implications. Frontiers in Robotics and AI 5 (2018), 114. https://doi.org/10.3389/frobt.2018.00114Google ScholarGoogle ScholarCross RefCross Ref
  60. OmniSci. 2020. Remote Sensing. https://www.omnisci.com/technical-glossary/remote-sensingGoogle ScholarGoogle Scholar
  61. Federico Pasquaré Mariotto, Varvara Antoniou, Kyriaki Drymoni, Fabio Luca Bonali, Paraskevi Nomikou, Luca Fallati, Odysseas Karatzaferis, and Othonas Vlasopoulos. 2021. Virtual Geosite Communication through a WebGIS Platform: A Case Study from Santorini Island (Greece). Applied Sciences 11, 12 (2021), 1–22. https://doi.org/10.3390/app11125466Google ScholarGoogle Scholar
  62. Julie Peacock, Ruth Mewis, and Deirdre Rooney. 2018. The use of campus based field teaching to provide an authentic experience to all students. Journal of Geography in Higher Education 42, 4 (2018), 531–539. https://doi.org/10.1080/03098265.2018.1460805Google ScholarGoogle Scholar
  63. Gustav B. Petersen, Sara Klingenberg, Richard E. Mayer, and Guido Makransky. 2020. The virtual field trip: Investigating how to optimize immersive virtual learning in climate change education. British Journal of Educational Technology 51, 6 (2020), 2098–2114. https://doi.org/10.1111/bjet.12991Google ScholarGoogle ScholarCross RefCross Ref
  64. Andrea Philips, Ariane Walz, Andreas Bergner, Thomas Graeff, Maik Heistermann, Sarah Kienzler, Oliver Korup, Torsten Lipp, Wolfgang Schwanghart, and Gerold Zeilinger. 2015. Immersive 3D geovisualization in higher education. Journal of Geography in Higher Education 39, 3 (2015), 437–449. http://dx.doi.org/10.1080/03098265.2015.1066314Google ScholarGoogle ScholarCross RefCross Ref
  65. L. Piovano, M. M. Brunello, I. Musso, L. Rocci, and V. Basso. 2013. Virtual reality representation of Martian soil for space exploration. Pattern Recognition and Image Analysis 23, 1 (2013), 111–129. https://doi.org/10.1134/S1054661812040141Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Markus Rittenbruch, Kellie Vella, Margot Brereton, James Hogan, Daniel Johnson, Julian Heinrich, and Sean O’Donoghue. 2021. Collaborative Sense-making in Genomic Research: The Role of Visualisation. IEEE Transactions on Visualization and Computer Graphics PP (06 2021), 1–1. https://doi.org/10.1109/TVCG.2021.3090746Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Cěněk Šašinka, Zdeněk Stachoň, Michal Sedlák, Jiří Chmelík, Lukáš Herman, Petr Kubíček, Alžběta Šašinková, Milan Doležal, Hynek Tejkl, Tomáš Urbánek, Hana Svatoňová, Pavel Ugwitz, and Vojtěch Juřík. 2019. Collaborative immersive virtual environments for education in geography. ISPRS International Journal of Geo-Information 8, 1(2019). https://doi.org/10.3390/ijgi8010003Google ScholarGoogle Scholar
  68. Christian Schott. 2017. Virtual fieldtrips and climate change education for tourism students. Journal of Hospitality, Leisure, Sport and Tourism Education 21, 1473-8376(2017), 13–22. https://doi.org/10.1016/j.jhlste.2017.05.002Google ScholarGoogle ScholarCross RefCross Ref
  69. Steven Semken, Emily Geraghty Ward, Sadredin Moosavi, and Pauline W.U. Chinn. 2017. Place-based education in geoscience: Theory, research, practice, and assessment. Journal of Geoscience Education 65, 4 (2017), 542–562. https://doi.org/10.5408/17-276.1Google ScholarGoogle ScholarCross RefCross Ref
  70. William R Sherman, Gary L Kinsland, Christoph W Borst, Eric Whiting, Jurgen P Schulze, Philip Weber, Albert Y M Lin, Aashish Chaudhary, Simon Su, and Daniel S Coming. 2014. Immersive Visualization for the Geological Sciences. In Handbook of Virtual Environments: Design, Implementation, and Applications (2nd ed.), Kelly S. Hale and Kay M. Stanney (Eds.). CRC Press, Boca Raton, Chapter Immersive, 1261–1294. https://doi.org/10.1201/b17360-59Google ScholarGoogle Scholar
  71. Mel Slater. 2009. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1535 (Dec 2009), 3549–3557. https://doi.org/10.1098/rstb.2009.0138Google ScholarGoogle ScholarCross RefCross Ref
  72. Bernhard Spanlang, Jean-Marie Normand, David Borland, Konstantina Kilteni, Elias Giannopoulos, Ausiàs Pomés, Mar González-Franco, Daniel Perez-Marcos, Jorge Arroyo-Palacios, Xavi Navarro Muncunill, and et al.2014. How to Build an Embodiment Lab: Achieving Body Representation Illusions in Virtual Reality. Frontiers in Robotics and AI 1 (2014), 9. https://doi.org/10.3389/frobt.2014.00009Google ScholarGoogle ScholarCross RefCross Ref
  73. Earth Science Data Systems. 2021. Geographic Information Systems (GIS). https://earthdata.nasa.gov/learn/gisGoogle ScholarGoogle Scholar
  74. Claudio Vanneschi, Riccardo Salvini, Giovanni Massa, Silvia Riccucci, and Angelo Borsani. 2014. Geological 3D modeling for excavation activity in an underground marble quarry in the Apuan Alps (Italy). Computers and Geosciences 69, 0098-3004 (2014), 41–54. https://doi.org/10.1016/j.cageo.2014.04.009Google ScholarGoogle ScholarCross RefCross Ref
  75. Eduardo Veas, Raphael Grasset, Ernst Kruijff, and Dieter Schmalstieg. 2012. Extended overview techniques for outdoor augmented reality. IEEE Transactions on Visualization and Computer Graphics 18, 4(2012), 565–572. https://doi.org/10.1109/TVCG.2012.44Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Xianying Wang, Cong Guo, David A. Yuen, and Gang Luo. 2020. GeoVReality: A computational interactive virtual reality visualization framework and workflow for geophysical research. Physics of the Earth and Planetary Interiors 298, August 2019(2020), 106312. https://doi.org/10.1016/j.pepi.2019.106312Google ScholarGoogle Scholar
  77. Yi Hua Weng, Fu Shing Sun, and Jeffry D. Grigsby. 2012. GeoTools: An android phone application in geology. Computers and Geosciences 44, 0098-3004 (2012), 24–30. https://doi.org/10.1016/j.cageo.2012.02.027Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Rolf Westerteiger. 2014. Virtual Reality Methods for Research in the Geosciences. Ph.D. Dissertation. Technical University of Kaiserslautern. https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3943 urn:nbn:de:hbz:386-kluedo-39435Google ScholarGoogle Scholar
  79. Yalong Yang, Bernhard Jenny, Tim Dwyer, Kim Marriott, Haohui Chen, and Maxime Cordeil. 2018. Maps and Globes in Virtual Reality. Computer Graphics Forum 37, 3 (2018), 427–438. https://doi.org/10.1111/cgf.13431Google ScholarGoogle ScholarCross RefCross Ref
  80. Jiayan Zhao, Jan Oliver Wallgrün, Peter C. LaFemina, Jim Normandeau, and Alexander Klippel. 2019. Harnessing the power of immersive virtual reality - visualization and analysis of 3D earth science data sets. Geo-Spatial Information Science 22, 4 (2019), 237–250. https://doi.org/10.1080/10095020.2019.1621544Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Towards Designing Immersive Geovisualisations: Literature Review and Recommendations for Future Research

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in
                • Published in

                  cover image ACM Other conferences
                  OzCHI '21: Proceedings of the 33rd Australian Conference on Human-Computer Interaction
                  November 2021
                  361 pages

                  Copyright © 2021 ACM

                  Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 15 September 2022

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • research-article
                  • Research
                  • Refereed limited

                  Acceptance Rates

                  Overall Acceptance Rate362of729submissions,50%

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader

                HTML Format

                View this article in HTML Format .

                View HTML Format