skip to main content
10.1145/3523111.3523117acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmvaConference Proceedingsconference-collections
research-article

Ghosting Effect Removal for Multi-Frame Super-Resolution on CCTV Videos with Moving Objects

Authors Info & Claims
Published:02 May 2022Publication History

ABSTRACT

With the increased use of closed-circuit television (CCTV) footage for security and surveillance purposes as well as for object or person recognition and efficiency monitoring, high-quality CCTV videos are necessary. In this paper, we propose Corgi Eye, a moving object removal + super-resolution framework for enhancing CCTV footages to remove ghosting artifacts caused by performing multi-frame super-resolution (MISR) on moving objects. Our method extends the framework of Eagle Eye, which is an existing MISR framework tailored for mobile devices. Our results demonstrate that the system can completely remove ghosting effects caused by moving objects while performing MISR on CCTV footage. Our proposed method demonstrates competitive performance when compared to Eagle Eye, achieving a 16% increase in terms of PSNR metric. Additionally, our method can produce clear images, on par with deep learning approaches such as ESPCN and SOF-VSR.

Skip Supplemental Material Section

Supplemental Material

CorgiEyeTrailer.mp4

mp4

14.2 MB

References

  1. Jiwoong Bang, Daewon Kim, and Hyeonsang Eom. 2012. Motion object and regional detection method using block-based background difference video frames. In 2012 IEEE International Conference on Embedded and Real-Time Computing Systems and Applications. IEEE, 350–357.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. 2021. Deep burst super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9209–9218.Google ScholarGoogle ScholarCross RefCross Ref
  3. S. Chiu, C. C. Chiu, and S. S. D. Xu. 2018. A background subtraction algorithm in complex environments based on category entropy analysis. Applied Sciences 8, 6 (2018), 885. https://doi.org/10.3390/app8060885Google ScholarGoogle ScholarCross RefCross Ref
  4. N Del Gallego and J. Ilao. 2017. Multiple-image super-resolution on mobile devices: An image warping approach. Journal of Imaging 8, 2017 (2017). https://doi.org/10.1186/s13640-016-0156-zGoogle ScholarGoogle Scholar
  5. N. Del Gallego and J. Ilao. 2018. Improving multiple-image super-resolution for mobile devices through image alignment selection. Journal of WSCG 26, 2 (2018), 122–131.Google ScholarGoogle ScholarCross RefCross Ref
  6. C. Ding, A. Kamal, G. Denina, H. Nguyen, A. Ivers, B. Varda, C. Ravishankar, B. Bhanu, and A. Roy-Chowdhury. 2010. Videoweb Activities Dataset, ICPR contest on Semantic Description of Human Activities (SDHA). http://cvrc.ece.utexas.edu/SDHA2010/Wide_Area_Activity.html.Google ScholarGoogle Scholar
  7. Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2015. Image super-resolution using deep convolutional networks. IEEE transactions on pattern analysis and machine intelligence 38, 2(2015), 295–307.Google ScholarGoogle Scholar
  8. Chao Dong, Chen Change Loy, and Xiaoou Tang. 2016. Accelerating the super-resolution convolutional neural network. In European conference on computer vision. Springer, 391–407.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. 2013. Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR). http://www.cvlibs.net/datasets/kitti/raw_data.phpGoogle ScholarGoogle Scholar
  10. Daniel Glasner, Shai Bagon, and Michal Irani. 2009. Super-resolution from a single image. In 2009 IEEE 12th international conference on computer vision. IEEE, 349–356.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. Godbehere, A. Matsukawa, and K. Goldberg. 2012. Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation. In 2012 American Control Conference (ACC). IEEE.Google ScholarGoogle Scholar
  12. N. Goyette, P.-M. Jodoin, J. Konrad, and P. Ishwar. 2012. Changedetection.net: A new change detection benchmark dataset. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. http://jacarini.dinf.usherbrooke.ca/dataset2012/Google ScholarGoogle Scholar
  13. Wei Han, Shiyu Chang, Ding Liu, Mo Yu, Michael Witbrock, and Thomas S Huang. 2018. Image super-resolution via dual-state recurrent networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 1654–1663.Google ScholarGoogle ScholarCross RefCross Ref
  14. Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. 2019. Recurrent back-projection network for video super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3897–3906.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.Google ScholarGoogle ScholarCross RefCross Ref
  16. Michal Irani and Shmuel Peleg. 1991. Improving resolution by image registration. CVGIP: Graphical models and image processing 53, 3(1991), 231–239.Google ScholarGoogle Scholar
  17. Takashi Isobe, Xu Jia, Shuhang Gu, Songjiang Li, Shengjin Wang, and Qi Tian. 2020. Video super-resolution with recurrent structure-detail network. In European Conference on Computer Vision. Springer, 645–660.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Julio Cezar Silveira Jacques, Claudio Rosito Jung, and Soraia Raupp Musse. 2006. A background subtraction model adapted to illumination changes. In 2006 International Conference on Image Processing. IEEE, 1817–1820.Google ScholarGoogle ScholarCross RefCross Ref
  19. Reza Javadzadeh, Ehsan Banihashemi, and Javad Hamidzadeh. 2015. Fast vehicle detection and counting using background subtraction technique and prewitt edge detection. International Journal of Computer Science and Telecommunications 6, 10(2015), 8–12.Google ScholarGoogle Scholar
  20. Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. 2017. Deep convolutional neural network for inverse problems in imaging. IEEE Transactions on Image Processing 26, 9 (2017), 4509–4522.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Kaur. 2017. Background Subtraction in Video Surveillance. Electronic Theses and Dissertations(2017), 5944.Google ScholarGoogle Scholar
  22. Michal Kawulok, Pawel Benecki, Szymon Piechaczek, Krzysztof Hrynczenko, Daniel Kostrzewa, and Jakub Nalepa. 2019. Deep learning for multiple-image super-resolution. IEEE Geoscience and Remote Sensing Letters 17, 6 (2019), 1062–1066.Google ScholarGoogle ScholarCross RefCross Ref
  23. P. Li, L. Prieto, D. Mery, and P. J. Flynn. 2019. Face recognition in low quality images: A survey. ACM Comput. Surv 1, 1 (2019).Google ScholarGoogle Scholar
  24. Bee Lim and Kyoung Mu Lee. 2017. Deep recurrent ResNet for video super-resolution. In 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 1452–1455.Google ScholarGoogle ScholarCross RefCross Ref
  25. Ce Liu and Deqing Sun. 2011. A bayesian approach to adaptive video super resolution. In CVPR 2011. IEEE, 209–216.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. LY Liu, N Sang, and R Huang. 2010. Background subtraction using shape and colour information. Electronics letters 46, 1 (2010), 41–43.Google ScholarGoogle Scholar
  27. Xiang Ma, Junping Zhang, and Chun Qi. 2010. Hallucinating face by position-patch. Pattern Recognition 43, 6 (2010), 2224–2236.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Dennis Mitzel, Thomas Pock, Thomas Schoenemann, and Daniel Cremers. 2009. Video super resolution using duality based tv-l 1 optical flow. In Joint Pattern Recognition Symposium. Springer, 432–441.Google ScholarGoogle ScholarCross RefCross Ref
  29. Anaswara S Mohan and R Resmi. 2014. Video image processing for moving object detection and segmentation using background subtraction. In 2014 First International Conference on Computational Systems and Communications (ICCSC). IEEE, 288–292.Google ScholarGoogle ScholarCross RefCross Ref
  30. SeungJong Noh and Moongu Jeon. 2012. A new framework for background subtraction using multiple cues. In Asian Conference on Computer Vision. Springer, 493–506.Google ScholarGoogle Scholar
  31. S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C. Chen, J.T. Lee, S. Mukherjee, J.K. Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji, K. Reddy, Shah M., C. Vondrick, H. Pirsiavasha, D. Ramanan, J. Yuen, A. Torralba, B. Song, A. Fong, A. Roy-Chowdhury, and Desai M.2011. A Large-scale Benchmark Dataset for Event Recognition in Surveillance Video. Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR). https://viratdata.org/Google ScholarGoogle Scholar
  32. T. Qasim, R.B. Fisher, and N. Bhatti. 2021. Ground-truthing Large Human Behavior Monitoring Datasets.Google ScholarGoogle Scholar
  33. M. S. Ryoo and J. K. Aggarwal. 2010. UT-Interaction Dataset, ICPR contest on Semantic Description of Human Activities (SDHA). http://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html.Google ScholarGoogle Scholar
  34. Mehdi SM Sajjadi, Raviteja Vemulapalli, and Matthew Brown. 2018. Frame-recurrent video super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 6626–6634.Google ScholarGoogle ScholarCross RefCross Ref
  35. Francesco Salvetti, Vittorio Mazzia, Aleem Khaliq, and Marcello Chiaberge. 2020. Multi-Image Super Resolution of Remotely Sensed Images Using Residual Attention Deep Neural Networks. Remote Sensing 12, 14 (2020). https://doi.org/10.3390/rs12142207Google ScholarGoogle Scholar
  36. Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. (2016). https://arxiv.org/pdf/1609.05158.pdfGoogle ScholarGoogle Scholar
  37. Pierre-Luc St-Charles, Guillaume-Alexandre Bilodeau, and Robert Bergevin. 2015. SuBSENSE: A Universal Change Detection Method With Local Adaptive Sensitivity. IEEE Transactions on Image Processing 24, 1 (2015).Google ScholarGoogle ScholarCross RefCross Ref
  38. Alexandru Telea. 2004. An image inpainting technique based on the fast marching method. Journal of graphics tools 9, 1 (2004), 23–34.Google ScholarGoogle ScholarCross RefCross Ref
  39. Longguang Wang, Yulan Guo, Zaiping Lin, Xinpu Deng, and Wei An. 2018. Learning for video super-resolution through HR optical flow estimation. In Asian Conference on Computer Vision. Springer, 514–529.Google ScholarGoogle Scholar
  40. Longguang Wang, Yulan Guo, Li Liu, Zaiping Lin, Xinpu Deng, and Wei An. 2019. Deep video super-resolution using HR optical flow estimation. (2019). https://arxiv.org/pdf/2001.02129.pdfGoogle ScholarGoogle Scholar
  41. L. Wang, Y. Guo, L. Liu, Z. Lin, X. Deng, and W. An. 2020. Deep video super-resolution using HR optical flow estimation. arXiv (6 Jan. 2020).Google ScholarGoogle Scholar
  42. Longguang Wang, Yulan Guo, Li Liu, Zaiping Lin, Xinpu Deng, and Wei An. 2020. Deep video super-resolution using HR optical flow estimation. IEEE Transactions on Image Processing 29 (2020), 4323–4336.Google ScholarGoogle ScholarCross RefCross Ref
  43. W. Wang, C. Ren, X. He, H. Chen, and L. Qing. 2018. Video super-resolution via residual learning. arXiv 6(2018), 23767–23777.Google ScholarGoogle Scholar
  44. Greg Ward. 2003. Fast, robust image registration for compositing high dynamic range photographs from hand-held exposures. Journal of graphics tools 8, 2 (2003), 17–30.Google ScholarGoogle ScholarCross RefCross Ref
  45. Chih-Yuan Yang, Sifei Liu, and Ming-Hsuan Yang. 2013. Structured face hallucination. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1099–1106.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Chih-Yuan Yang, Chao Ma, and Ming-Hsuan Yang. 2014. Single-Image Super-Resolution: A Benchmark. In Computer Vision – ECCV 2014, David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.). Springer International Publishing, Cham, 372–386.Google ScholarGoogle ScholarCross RefCross Ref
  47. Xin Yu, Basura Fernando, Richard Hartley, and Fatih Porikli. 2018. Super-Resolving Very Low-Resolution Face Images with Supplementary Attributes. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 908–917.Google ScholarGoogle Scholar
  48. Qiangqiang Yuan, Liangpei Zhang, Huanfeng Shen, and Pingxiang Li. 2010. Adaptive multiple-frame image super-resolution based on U-curve. IEEE Transactions on Image Processing 19, 12 (2010), 3157–3170.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. D. Zeng, X. Chen, M. Zhu, M. Goesele, and A. Kuijper. 2019. Background subtraction with real-time semantic segmentation. IEEE Access 7(2019), 153869–153884. https://doi.org/10.1109/ACCESS.2019.2899348Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICMVA '22: Proceedings of the 2022 5th International Conference on Machine Vision and Applications
    February 2022
    128 pages
    ISBN:9781450395670
    DOI:10.1145/3523111

    Copyright © 2022 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 2 May 2022

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)19
    • Downloads (Last 6 weeks)1

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format