skip to main content
10.1145/3523227.3547400acmotherconferencesArticle/Chapter ViewAbstractPublication PagesrecsysConference Proceedingsconference-collections
invited-talk

Automate Page Layout Optimization: An Offline Deep Q-Learning Approach

Published: 13 September 2022 Publication History

Abstract

The modern e-commerce web pages have brought better customer experience and more profitable services by whole page optimization at different granularity, e.g., page layout optimization, item ranking optimization, etc. Generating the proper page layout per customer’s request is one of the vital tasks during the web page rendering process, which can directly impact customers’ shopping experience and their decision-making. In this paper, we formulate the request-rendering interactions as a Markov decision process (MDP) and solve it by deep reinforcement learning (RL). Specifically, we present the design and implementation of applying offline Deep Q-Learning (DQN) to the contextual page layout optimization problem. Through the offline evaluation method, we demonstrate the effectiveness of the proposed framework, i.e., the RL agent has the potential to perform better than the baseline ranker by learning from the offline data set, e.g., the RL agent can improve the average cumulative rewards up to 36.69% comparing to the baseline ranker.

Supplementary Material

MP4 File (Automate Page Layout Optimization An Offline Deep Q-Learning Approach.mp4)
Presentation video of "Automate Page Layout Optimization: An Offline Deep Q-Learning Approach"

References

[1]
Hado Hasselt. 2010. Double Q-learning. Advances in neural information processing systems 23 (2010), 2613–2621.
[2]
Peter J Huber. 1992. Robust estimation of a location parameter. In Breakthroughs in statistics. Springer, 492–518.
[3]
Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. 2011. Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms. In Proceedings of the fourth ACM international conference on Web search and data mining. 297–306.
[4]
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602(2013).
[5]
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, 2015. Human-level control through deep reinforcement learning. nature 518, 7540 (2015), 529–533.
[6]
OpenAI. 2021. Gym. https://gym.openai.com/docs/.
[7]
Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.
[8]
Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang Tang. 2018. Deep reinforcement learning for page-wise recommendations. In Proceedings of the 12th ACM Conference on Recommender Systems. 95–103.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
RecSys '22: Proceedings of the 16th ACM Conference on Recommender Systems
September 2022
743 pages
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 September 2022

Check for updates

Author Tags

  1. deep reinforcement learning
  2. e-commerce
  3. offline learning
  4. recommendation

Qualifiers

  • Invited-talk
  • Research
  • Refereed limited

Conference

Acceptance Rates

Overall Acceptance Rate 254 of 1,295 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 221
    Total Downloads
  • Downloads (Last 12 months)36
  • Downloads (Last 6 weeks)8
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media