skip to main content
10.1145/3523286.3524540acmotherconferencesArticle/Chapter ViewAbstractPublication PagesbicConference Proceedingsconference-collections
research-article

Autonomous DNA Neuron Learning Algorithm Based on DNA Strand Displacement

Authors Info & Claims
Published:31 May 2022Publication History

ABSTRACT

DNA neuron learning, or weight update of DNA neurons, is an important research content in the construction of a DNA neural network. In this work, we propose a DNA reaction network to implement the autonomous weight update of DNA neurons based on DNA strand displacement. The DNA reaction network consists of four modules: weight update module, calculation module, synchronization module, and feedback adjustment module to achieve the effectiveness and consistency of multiple training data in DNA neuron learning. Especially, the learning and the testing of DNA neurons are in the same DNA strand displacement reaction system. The simulation results show that the DNA neuron can classify test data correctly, which proves that the algorithm adopted in this work is effective.

References

  1. L. M. Adleman (1994). Molecular Computation of Solutions to Combinatorial Problems. Science, 266(5187), 1021-1024.Google ScholarGoogle ScholarCross RefCross Ref
  2. G. Seelig, D. Soloveichik, D. Y. Zhang and E. Winfree (2006). Enzyme-Free Nucleic Acid Logic Circuits. Science, 314(5805), 1585-1588.Google ScholarGoogle Scholar
  3. X. Chen (2012). Expanding the Rule Set of DNA Circuitry with Associative Toehold Activation. Journal of the American Chemical Society, 134(1), 263-271.Google ScholarGoogle ScholarCross RefCross Ref
  4. B. Yurke, A. J. Turberfield, A. P. Mills, F. C. Simmel and J. L. Neumann (2000). A DNA-fuelled Molecular Machine Made of DNA. Nature, 406(6796), 605-608.Google ScholarGoogle ScholarCross RefCross Ref
  5. L. Qian and E. Winfree (2011). A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits. Journal of the Royal Society Interface, 8(62), 1281-1297.Google ScholarGoogle ScholarCross RefCross Ref
  6. Y. B. Zhao, Y. Liu, X. D. Zheng, B. Wang, H. Lv, S. H. Zhou, Q. Zhang and X. P. Wei (2019). Half Adder and Half Subtractor Logic Gates Based on Nicking Enzymes. Molecular Systems Design & Engineering, 4(6), 1103-1113.Google ScholarGoogle ScholarCross RefCross Ref
  7. M. M. Lv, W. J. Zhou, D. Q. Fan, Y. C. Guo, X. Q. Zhu, J. T. Ren and E. R. Wang (2020). Illuminating Diverse Concomitant DNA Logic Gates and Concatenated Circuits with Hairpin DNA-Templated Silver Nanoclusters as Universal Dual-Output Generators. Advanced Materials, 32(17), 1908480.Google ScholarGoogle ScholarCross RefCross Ref
  8. R. Montagud-Martinez, M. Heras-Hernandez, L. Goiriz, J. A. Daros and G. Rodrigo (2021). CRISPR-Mediated Strand Displacement Logic Circuits with Toehold-Free DNA. ACS Synthetic Biology, 10(5), 950-956.Google ScholarGoogle ScholarCross RefCross Ref
  9. W. Y. Lv, C. H. Li, Y. F. Li, S. J. Zhen and C. Z. Huang (2021). Hierarchical Hybridization Chain Reaction for Amplified Signal Output and Cascade DNA Logic Circuits. Analytical Chemistry, 93(7), 3411-3417.Google ScholarGoogle ScholarCross RefCross Ref
  10. C. Zou, X. Wei, Q. Zhang and Y. Liu (2018). Synchronization of Chemical Reaction Networks Based on DNA Strand Displacement Circuits. IEEE Access, 6, 20584-20595.Google ScholarGoogle ScholarCross RefCross Ref
  11. M. Citartan, H. Kaur, R. Presela and T. H. Tang (2019). Aptamers as the Chaperones (Aptachaperones) of Drugs-From siRNAs to DNA Nanorobots. International Journal of Pharmaceutics, 567, 118483.Google ScholarGoogle ScholarCross RefCross Ref
  12. D. M. Kolpashchikov (2019). Evolution of Hybridization Probes to DNA Machines and Robots. Accounts of Chemical Research, 52(7), 1949-1956.Google ScholarGoogle ScholarCross RefCross Ref
  13. X. L. Zhang, N. X. Liu, M. Zhou, T. Zhang, T. R. Tian, S. H. Li, Z. S. Tang, Y. F. Lin and X. X. Cai (2019). DNA Nanorobot Delivers Antisense Oligonucleotides Silencing c-Met Gene Expression for Cancer Therapy. Journal of Biomedical Nanotechnology, 15(9), 1948-1959.Google ScholarGoogle ScholarCross RefCross Ref
  14. H. Li, J. Liu and H. Z. Gu (2019). Targeting Nucleolin to Obstruct Vasculature Feeding with an Intelligent DNA Nanorobot. Journal of Cellular and Molecular Medicine, 23(3), 2248-2250.Google ScholarGoogle ScholarCross RefCross Ref
  15. E. Tasciotti (2018). Smart Cancer Therapy with DNA Origami. Nature Biotechnology, 36(3), 234-235.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Cordeiro, A. R. Otrelo-Cardoso, D. I. Svergun, P. V. Konarev, J. C. Lima, T. Santos-Silva and P. V. Baptista (2018). Optical and Structural Characterization of a Chronic Myeloid Leukemia DNA Biosensor. ACS Chemical Biology, 13(5), 1235-1242.Google ScholarGoogle ScholarCross RefCross Ref
  17. J. Chao, D. Zhu, Y. Zhang, L. Wang and C. Fan (2016). DNA Nanotechnology-Enabled Biosensors. Biosensors and Bioelectronics, 76, 68-79.Google ScholarGoogle ScholarCross RefCross Ref
  18. H. Wang, H. M. Wang, I. Willner and F. A. Wang (2020). High-Performance Biosensing Based on Autonomous Enzyme-Free DNA Circuits. Topics in Current Chemistry, 378(1), 20.Google ScholarGoogle ScholarCross RefCross Ref
  19. Z. Tang, Z. X. Yin, L. H. Wang, J. Z. Cui, J. Yang and R. S. Wang (2021). Solving 0-1 Integer Programming Problem Based on DNA Strand Displacement Reaction Network. ACS Synthetic Biology, 10(9), 2318-2330.Google ScholarGoogle ScholarCross RefCross Ref
  20. C. Zou, X. Wei, Q. Zhang, C. Liu, C. Zhou and Y. Liu (2017). Four-Analog Computation Based on DNA Strand Displacement. ACS Omega, 2(8), 4143-4160.Google ScholarGoogle ScholarCross RefCross Ref
  21. A. J. Genot, J. Bath and A. J. Turberfield (2013). Combinatorial Displacement of DNA Strands: Application to Matrix Multiplication and Weighted Sums. Angewandte Chemie-International Edition, 52(4), 1189-1192.Google ScholarGoogle ScholarCross RefCross Ref
  22. D. Y. Zhang and G. Seelig (2011). DNA-Based Fixed Gain Amplifiers and Linear Classifier Circuits. Lecture Notes in Computer Science, 6518, 176-186.Google ScholarGoogle ScholarCross RefCross Ref
  23. T. Q. Song, S. Garg, R. Mokhtar, H. Bui and J. Reif (2016). Analog Computation by DNA Strand Displacement Circuits. ACS Synthetic Biology, 5(8), 898-912.Google ScholarGoogle ScholarCross RefCross Ref
  24. T. Q. Song, S. Garg, R. Mokhtar, H. Bui and J. Reif (2018). Design and Analysis of Compact DNA Strand Displacement Circuits for Analog Computation Using Autocatalytic Amplifiers. ACS Synthetic Biology, 7(1), 46-53.Google ScholarGoogle ScholarCross RefCross Ref
  25. C. Zou, X. Wei, Q. Zhang, C. J. Liu and Y. Liu (2019). Solution of Equations Based on Analog DNA Strand Displacement Circuits. IEEE Transactions on Nanobioscience, 18(2), 191-204.Google ScholarGoogle ScholarCross RefCross Ref
  26. L. Qian, E. Winfree and J. Bruck (2011). Neural Network Computation with DNA Strand Displacement Cascades. Nature, 475(7356), 368-372.Google ScholarGoogle Scholar
  27. K. M. Cherry and L. L. Qian (2018). Scaling Up Molecular Pattern Recognition with DNA-based Winner-Take-All Neural Networks. Nature, 559(7714), 370-376.Google ScholarGoogle ScholarCross RefCross Ref
  28. S. Y. Zhu and Q. Zhang (2021). Implementing Feedforward Neural Network Using DNA Strand Displacement Reactions. Nano, 16(1), 2150001.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. R. Lakin, A. Minnich, T. Lane and D. Stefanovic (2014). Design of a Biochemical Circuit Motif for Learning Linear Functions. Journal of the Royal Society Interface, 11(101), 20140902.Google ScholarGoogle ScholarCross RefCross Ref
  30. M. R. Lakin and D. Stefanovic (2016). Supervised Learning in Adaptive DNA Strand Displacement Networks. ACS Synthetic Biology, 5(8), 885-897.Google ScholarGoogle ScholarCross RefCross Ref
  31. C. Baek, S. W. Lee, B. J. Lee, D. H. Kwak and B. T. Zhang (2019). Enzymatic Weight Update Algorithm for DNA-Based Molecular Learning. Molecules, 24(7), 1409.Google ScholarGoogle Scholar
  32. P. Banda and C. Teuscher (2014). Learning Two-Input Linear and Nonlinear Analog Functions with a Simple Chemical System. Lecture Notes in Computer Science, 8553, 14-26.Google ScholarGoogle ScholarCross RefCross Ref
  33. P. Banda, C. Teuscher and M. R. Lakin (2013). Online Learning in a Chemical Perceptron. Artificial Life, 19(2), 195-219.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. P. Banda, C. Teuscher and D. Stefanovic (2014). Training an Asymmetric Signal Perceptron through Reinforcement in an Artificial Chemistry. Journal of the Royal Society Interface, 11(93), 20131100.Google ScholarGoogle ScholarCross RefCross Ref
  35. D. Blount, P. Banda, C. Teuscher and D. Stefanovic (2017). Feedforward Chemical Neural Network: An in Silico Chemical System that Learns xor. Artificial Life, 23(3), 295-317.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. M. R. Lakin, S. Youssef, F. Polo, S. Emmott and A. Phillips (2011). Visual DSD: A Design and Analysis Tool for DNA Strand Displacement Systems. Bioinformatics, 27(22), 3211-3213.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. C. Spaccasassi, M. R. Lakin and A. Phillips (2019). A Logic Programming Language for Computational Nucleic Acid Devices. ACS Synthetic Biology, 8(7), 1530-1547.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Autonomous DNA Neuron Learning Algorithm Based on DNA Strand Displacement
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          BIC 2022: 2022 2nd International Conference on Bioinformatics and Intelligent Computing
          January 2022
          551 pages
          ISBN:9781450395755
          DOI:10.1145/3523286

          Copyright © 2022 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 31 May 2022

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited
        • Article Metrics

          • Downloads (Last 12 months)16
          • Downloads (Last 6 weeks)0

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format