skip to main content
10.1145/3526113.3545644acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

HapTag: A Compact Actuator for Rendering Push-Button Tactility on Soft Surfaces

Authors Info & Claims
Published:28 October 2022Publication History

ABSTRACT

As touch interactions become ubiquitous in the field of human computer interactions, it is critical to enrich haptic feedback to improve efficiency, accuracy, and immersive experiences. This paper presents HapTag, a thin and flexible actuator to support the integration of push button tactile renderings to daily soft surfaces. Specifically, HapTag works under the principle of hydraulically amplified electroactive actuator (HASEL) while being optimized by embedding a pressure sensing layer, and being activated with a dedicated voltage appliance in response to users’ input actions, resulting in fast response time, controllable and expressive push-button tactile rendering capabilities. HapTag is in a compact formfactor and can be attached, integrated, or embedded on various soft surfaces like cloth, leather, and rubber. Three common push button tactile patterns were adopted and implemented with HapTag. We validated the feasibility and expressiveness of HapTag by demonstrating a series of innovative applications under different circumstances.

References

  1. Eric Acome, Shane K Mitchell, TG Morrissey, MB Emmett, Claire Benjamin, Madeline King, Miles Radakovitz, and Christoph Keplinger. 2018. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 6371 (2018), 61–65.Google ScholarGoogle Scholar
  2. Asma Akther, Jasmine O Castro, Seyed Ali Mousavi Shaegh, Amgad R Rezk, and Leslie Y Yeo. 2019. Miniaturised acoustofluidic tactile haptic actuator. Soft matter 15, 20 (2019), 4146–4152.Google ScholarGoogle Scholar
  3. David S. Alles. 1970. Information Transmission by Phantom Sensations. IEEE Transactions on Man-Machine Systems 11, 1 (1970), 85–91. https://doi.org/10.1109/TMMS.1970.299967Google ScholarGoogle ScholarCross RefCross Ref
  4. Cagatay Basdogan, Frederic Giraud, Vincent Levesque, and Seungmoon Choi. 2020. A review of surface haptics: enabling tactile effects on touch surfaces. IEEE transactions on haptics 13, 3 (2020), 450–470.Google ScholarGoogle Scholar
  5. Olivier Bau, Ivan Poupyrev, Ali Israr, and Chris Harrison. 2010. TeslaTouch: Electrovibration for Touch Surfaces. Association for Computing Machinery, New York, NY, USA, 283–292. https://doi.org/10.1145/1866029.1866074Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Sean Follmer, Daniel Leithinger, Alex Olwal, Nadia Cheng, and Hiroshi Ishii. 2012. Jamming User Interfaces: Programmable Particle Stiffness and Sensing for Malleable and Shape-Changing Devices. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (Cambridge, Massachusetts, USA) (UIST ’12). Association for Computing Machinery, New York, NY, USA, 519–528. https://doi.org/10.1145/2380116.2380181Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu Hogge, and Hiroshi Ishii. 2013. InFORM: Dynamic Physical Affordances and Constraints through Shape and Object Actuation. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (St. Andrews, Scotland, United Kingdom) (UIST ’13). Association for Computing Machinery, New York, NY, USA, 417–426. https://doi.org/10.1145/2501988.2502032Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Christian Frisson, Julien Decaudin, Thomas Pietrzak, Alexander Ng, Pauline Poncet, Fabrice Casset, Antoine Latour, and Stephen A. Brewster. 2017. Designing Vibrotactile Widgets with Printed Actuators and Sensors. In Adjunct Publication of the 30th Annual ACM Symposium on User Interface Software and Technology(Québec City, QC, Canada) (UIST ’17). Association for Computing Machinery, New York, NY, USA, 11–13. https://doi.org/10.1145/3131785.3131800Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S Grimnes. 1983. Electrovibration, cutaneous sensation of microampere current. Acta Physiologica Scandinavica 118, 1 (1983), 19–25.Google ScholarGoogle ScholarCross RefCross Ref
  10. Daniel Groeger, Martin Feick, Anusha Withana, and Jürgen Steimle. 2019. Tactlets: Adding Tactile Feedback to 3D Objects Using Custom Printed Controls. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology(New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 923–936. https://doi.org/10.1145/3332165.3347937Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Juan J Huaroto, Victor Ticllacuri, Etsel Suarez, Robert Ccorahua, and Emir A Vela. 2019. A Soft Pneumatic Haptic Actuator Mechanically Programmed for Providing Mechanotactile Feedback. MRS Advances 4, 19 (2019), 1131–1136.Google ScholarGoogle ScholarCross RefCross Ref
  12. Apple Inc.2021. Human Interface Guidelines: Haptics. Retrieved September 6, 2021 from https://developer.apple.com/design/human-interface-guidelines/ios/user-interaction/haptics/Google ScholarGoogle Scholar
  13. Yvonne Jansen, Thorsten Karrer, and Jan Borchers. 2010. MudPad: Tactile Feedback and Haptic Texture Overlay for Touch Surfaces. In ACM International Conference on Interactive Tabletops and Surfaces (Saarbrücken, Germany) (ITS ’10). Association for Computing Machinery, New York, NY, USA, 11–14. https://doi.org/10.1145/1936652.1936655Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lynette A Jones and Susan J Lederman. 2006. Human hand function. Oxford university press.Google ScholarGoogle Scholar
  15. Yei Hwan Jung, Jae-Hwan Kim, and John A Rogers. 2020. Skin-Integrated Vibrohaptic Interfaces for Virtual and Augmented Reality. Advanced Functional Materials(2020), 2008805.Google ScholarGoogle Scholar
  16. Edouard Leroy, Ronan Hinchet, and Herbert Shea. 2020. Multimode hydraulically amplified electrostatic actuators for wearable haptics. Advanced Materials 32, 36 (2020), 2002564.Google ScholarGoogle ScholarCross RefCross Ref
  17. Yi-Chi Liao, Sunjun Kim, Byungjoo Lee, and Antti Oulasvirta. 2020. Button Simulation and Design via FDVV Models. Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376262Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Alex Mazursky, Shan-Yuan Teng, Romain Nith, and Pedro Lopes. 2021. MagnetIO: Passive yet Interactive Soft Haptic Patches Anywhere. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3411764.3445543Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Shane K Mitchell, Trent Martin, and Christoph Keplinger. [n.d.]. A Pocket-Sized Ten-Channel High Voltage Power Supply for Soft Electrostatic Actuators. Advanced Materials Technologies([n. d.]), 2101469.Google ScholarGoogle Scholar
  20. Seongcheol Mun, Sungryul Yun, Saekwang Nam, Seung Koo Park, Suntak Park, Bong Je Park, Jeong Mook Lim, and Ki-Uk Kyung. 2018. Electro-active polymer based soft tactile interface for wearable devices. IEEE transactions on haptics 11, 1 (2018), 15–21.Google ScholarGoogle ScholarCross RefCross Ref
  21. Mark Nagurka and Richard Marklin. 2005. Measurement of stiffness and damping characteristics of computer keyboard keys. (2005).Google ScholarGoogle Scholar
  22. T. Nara, M. Takasaki, T. Maeda, T. Higuchi, S. Ando, and S. Tachi. 2001. Surface acoustic wave tactile display. IEEE Computer Graphics and Applications 21, 6 (2001), 56–63. https://doi.org/10.1109/38.963461Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Alex Olwal, Jon Moeller, Greg Priest-Dorman, Thad Starner, and Ben Carroll. 2018. I/O Braid: Scalable Touch-Sensitive Lighted Cords Using Spiraling, Repeating Sensing Textiles and Fiber Optics. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany) (UIST ’18). Association for Computing Machinery, New York, NY, USA, 485–497. https://doi.org/10.1145/3242587.3242638Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Antti Oulasvirta, Sunjun Kim, and Byungjoo Lee. 2018. Neuromechanics of a Button Press. Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3174082Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ailish O’Halloran, Fergal O’malley, and Peter McHugh. 2008. A review on dielectric elastomer actuators, technology, applications, and challenges. Journal of Applied Physics 104, 7 (2008), 9.Google ScholarGoogle Scholar
  26. Chaeyong Park, Jinhyuk Yoon, Seungjae Oh, and Seungmoon Choi. 2020. Augmenting Physical Buttons with Vibrotactile Feedback for Programmable Feels. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology(Virtual Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY, USA, 924–937. https://doi.org/10.1145/3379337.3415837Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Gunhyuk Park and Seungmoon Choi. 2018. Tactile Information Transmission by 2D Stationary Phantom Sensations. Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173832Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ron Pelrine, Roy Kornbluh, Qibing Pei, and Jose Joseph. 2000. High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 5454 (2000), 836–839.Google ScholarGoogle Scholar
  29. Ron Pelrine, Qibing Pei, and Roy Kornbluh. 2018. Dielectric elastomers: past, present, and potential future. In Electroactive Polymer Actuators and Devices (EAPAD) XX, Vol. 10594. International Society for Optics and Photonics, 1059406.Google ScholarGoogle Scholar
  30. Ivan Poupyrev, Nan-Wei Gong, Shiho Fukuhara, Mustafa Emre Karagozler, Carsten Schwesig, and Karen E. Robinson. 2016. Project Jacquard: Interactive Digital Textiles at Scale. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New York, NY, USA, 4216–4227. https://doi.org/10.1145/2858036.2858176Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Robert G Radwin and Barry A Ruffalo. 1999. Computer key switch force-displacement characteristics and short-term effects on localized fatigue. Ergonomics 42, 1 (1999), 160–170.Google ScholarGoogle ScholarCross RefCross Ref
  32. Jussi Rantala, Katri Salminen, Roope Raisamo, and Veikko Surakka. 2013. Touch Gestures in Communicating Emotional Intention via Vibrotactile Stimulation. Int. J. Hum.-Comput. Stud. 71, 6 (June 2013), 679–690. https://doi.org/10.1016/j.ijhcs.2013.02.004Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Munehiko Sato, Ivan Poupyrev, and Chris Harrison. 2012. Touché: Enhancing Touch Interaction on Humans, Screens, Liquids, and Everyday Objects. Association for Computing Machinery, New York, NY, USA, 483–492. https://doi.org/10.1145/2207676.2207743Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Samuel Schlatter, Patrin Illenberger, and Samuel Rosset. 2018. Peta-pico-Voltron: An open-source high voltage power supply. HardwareX 4(2018), e00039.Google ScholarGoogle ScholarCross RefCross Ref
  35. Y. Sekiguchi, K. Hirota, and M. Hirose. 2005. The design and implementation of ubiquitous haptic device. In First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference. 527–528. https://doi.org/10.1109/WHC.2005.128Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tanay Singhal and Oliver Schneider. 2021. Juicy Haptic Design: Vibrotactile Embellishments Can Improve Player Experience in Games. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3411764.3445463Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Alexa F. Siu, Eric J. Gonzalez, Shenli Yuan, Jason B. Ginsberg, and Sean Follmer. 2018. ShapeShift: 2D Spatial Manipulation and Self-Actuation of Tabletop Shape Displays for Tangible and Haptic Interaction. Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173865Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Harshal A Sonar, Aaron P Gerratt, Stéphanie P Lacour, and Jamie Paik. 2020. Closed-loop haptic feedback control using a self-sensing soft pneumatic actuator skin. Soft robotics 7, 1 (2020), 22–29.Google ScholarGoogle Scholar
  39. Robert M. Strong and Donald E. Troxel. 1970. An Electrotactile Display. IEEE Transactions on Man-Machine Systems 11, 1 (1970), 72–79. https://doi.org/10.1109/TMMS.1970.299965Google ScholarGoogle ScholarCross RefCross Ref
  40. Linzhi Tang and Nae Yoon Lee. 2010. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature. Lab on a Chip 10, 10 (2010), 1274–1280.Google ScholarGoogle Scholar
  41. Quang Van Duong, Vinh Phu Nguyen, Fabrice Domingues Dos Santos, and Seung Tae Choi. 2019. Localized fretting-vibrotactile sensations for large-area displays. ACS applied materials & interfaces 11, 36 (2019), 33292–33301.Google ScholarGoogle Scholar
  42. Siarhei Vishniakou, Brian W Lewis, Xiaofan Niu, Alireza Kargar, Ke Sun, Michael Kalajian, Namseok Park, Muchuan Yang, Yi Jing, Paul Brochu, 2013. Tactile feedback display with spatial and temporal resolutions. Scientific reports 3, 1 (2013), 1–7.Google ScholarGoogle Scholar
  43. Xingrui Wang, Shane K Mitchell, Ellen H Rumley, Philipp Rothemund, and Christoph Keplinger. 2020. High-strain peano-HASEL actuators. Advanced Functional Materials 30, 7 (2020), 1908821.Google ScholarGoogle ScholarCross RefCross Ref
  44. Michael Wessely, Ticha Sethapakdi, Carlos Castillo, Jackson C. Snowden, Ollie Hanton, Isabel P. S. Qamar, Mike Fraser, Anne Roudaut, and Stefanie Mueller. 2020. Sprayable User Interfaces: Prototyping Large-Scale Interactive Surfaces with Sensors and Displays. Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376249Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Michael Wiertlewski, José Lozada, and Vincent Hayward. 2011. The Spatial Spectrum of Tangential Skin Displacement Can Encode Tactual Texture. IEEE Transactions on Robotics 27, 3 (2011), 461–472. https://doi.org/10.1109/TRO.2011.2132830Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Laura Winfield, John Glassmire, J. Edward Colgate, and Michael Peshkin. 2007. T-PaD: Tactile Pattern Display through Variable Friction Reduction. In Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07). 421–426. https://doi.org/10.1109/WHC.2007.105Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Tae-Heon Yang, Hyungki Son, Sangkyu Byeon, Hyunjae Gil, Inwook Hwang, Gwanghyun Jo, Seungmoon Choi, Sang-Youn Kim, and Jin Ryong Kim. 2021. Magnetorheological Fluid Haptic Shoes for Walking in VR. IEEE Transactions on Haptics 14, 1 (2021), 83–94. https://doi.org/10.1109/TOH.2020.3017099Google ScholarGoogle ScholarCross RefCross Ref
  48. Yongjae Yoo, Taekbeom Yoo, Jihyun Kong, and Seungmoon Choi. 2015. Emotional responses of tactile icons: Effects of amplitude, frequency, duration, and envelope. In 2015 IEEE World Haptics Conference (WHC). 235–240. https://doi.org/10.1109/WHC.2015.7177719Google ScholarGoogle Scholar
  49. Sang Ho Yoon, Siyuan Ma, Woo Suk Lee, Shantanu Thakurdesai, Di Sun, Flávio P. Ribeiro, and James D. Holbery. 2019. HapSense: A Soft Haptic I/O Device with Uninterrupted Dual Functionalities of Force Sensing and Vibrotactile Actuation. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 949–961. https://doi.org/10.1145/3332165.3347888Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Sang Ho Yoon, Siyuan Ma, Woo Suk Lee, Shantanu Thakurdesai, Di Sun, Flávio P Ribeiro, and James D Holbery. 2019. HapSense: A soft haptic I/O device with uninterrupted dual functionalities of force sensing and vibrotactile actuation. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. 949–961.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Xinge Yu, Zhaoqian Xie, Yang Yu, Jungyup Lee, Abraham Vazquez-Guardado, Haiwen Luan, Jasper Ruban, Xin Ning, Aadeel Akhtar, Dengfeng Li, 2019. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 7783 (2019), 473–479.Google ScholarGoogle Scholar
  52. Yichen Zhai, Zhijian Wang, Kye-Si Kwon, Shengqiang Cai, Darren J Lipomi, and Tse Nga Ng. 2021. Printing Multi-Material Organic Haptic Actuators. Advanced Materials 33, 19 (2021), 2002541.Google ScholarGoogle ScholarCross RefCross Ref
  53. Yang Zhang and Chris Harrison. 2018. Pulp Nonfiction: Low-Cost Touch Tracking for Paper. Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3173574.3173691Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Yang Zhang, Chouchang (Jack) Yang, Scott E. Hudson, Chris Harrison, and Alanson Sample. 2018. Wall++: Room-Scale Interactive and Context-Aware Sensing. Association for Computing Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/3173574.3173847Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. HapTag: A Compact Actuator for Rendering Push-Button Tactility on Soft Surfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '22: Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology
      October 2022
      1363 pages
      ISBN:9781450393201
      DOI:10.1145/3526113

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 October 2022

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format