skip to main content
10.1145/3526241.3530051acmconferencesArticle/Chapter ViewAbstractPublication PagesglsvlsiConference Proceedingsconference-collections
keynote

In-Memory Computing based Machine Learning Accelerators: Opportunities and Challenges

Published: 06 June 2022 Publication History

Abstract

Traditional computing systems based on von Neumann architectures are fundamentally bottle-necked by the transfer speeds between memory and processor. With growing computational needs of today's application space, dominated by Machine Learning (ML) workloads, there is a need to design special purpose computing systems operating on the principle of co-located memory and processing units. Such an approach, commonly known as 'In-memory computing', can potentially eliminate expensive data movement costs by computing inside the memory array itself. To that effect, crossbars based on resistive switching Non-Volatile Memory (NVM) devices has shown immense promise in serving as the building blocks of in-memory computing systems, as their high storage density can overcome scaling challenges that plague CMOS technology today. Adding to that, the ability of resistive crossbars to accelerate the main computational kernel of ML workloads by performing massively parallel, in-situ matrix vector multiplication (MVM) operations, makes them a promising candidate for building area and energy-efficient systems. However, the analog computing nature in resistive crossbars introduce approximations in MVM computations due to device and circuit level nonidealities. Further, analog systems pose high cost peripheral circuit requirements for conversions between the analog and digital domain. Thus, there is a need to understand the entire system design stack, from device characteristics to architectures, and perform effective hardware-software co-design to truly realize the potential of resistive crossbars as future computing systems. In this talk, we will present a comprehensive overview of NVM crossbars for accelerating ML workloads. We describe, in detail, the design principles of the basic building blocks, such as the device and associated circuits, that constitute the crossbars. We explore non-idealities arising from the device characteristics and circuit behavior and study their impact on MVM functionality of NVM crossbars for machine learning hardware.

Index Terms

  1. In-Memory Computing based Machine Learning Accelerators: Opportunities and Challenges

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GLSVLSI '22: Proceedings of the Great Lakes Symposium on VLSI 2022
    June 2022
    560 pages
    ISBN:9781450393225
    DOI:10.1145/3526241
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 June 2022

    Check for updates

    Author Tags

    1. crossbars
    2. in-memory computing
    3. machine learning hardware
    4. non-volatile memory

    Qualifiers

    • Keynote

    Conference

    GLSVLSI '22
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 312 of 1,156 submissions, 27%

    Upcoming Conference

    GLSVLSI '25
    Great Lakes Symposium on VLSI 2025
    June 30 - July 2, 2025
    New Orleans , LA , USA

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 136
      Total Downloads
    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 28 Feb 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media