skip to main content
research-article

Exploring Sonification Mapping Strategies for Spatial Auditory Guidance in Immersive Virtual Environments

Published:02 September 2022Publication History
Skip Abstract Section

Abstract

Spatial auditory cues are important for many tasks in immersive virtual environments, especially guidance tasks. However, due to the limited fidelity of spatial sounds rendered by generic Head-Related Transfer Functions (HRTFs), sound localization usually has a limited accuracy, especially in elevation, which can potentially impact the effectiveness of auditory guidance. To address this issue, we explored whether integrating sonification with spatial audio can enhance the perceptions of auditory guidance cues so user performance in auditory guidance tasks can be improved. Specifically, we investigated the effects of sonification mapping strategy using a controlled experiment that compared four elevation sonification mapping strategies: absolute elevation mapping, unsigned relative elevation mapping, signed relative elevation mapping, and binary relative elevation mapping. In addition, we examined whether azimuth sonification mapping can further benefit the perception of spatial sounds. The results demonstrate that spatial auditory cues can be effectively enhanced by integrating elevation and azimuth sonification, where the accuracy and speed of guidance tasks can be significantly improved. In particular, the overall results suggest that binary relative elevation mapping is generally the most effective strategy among four elevation sonification mapping strategies, which indicates that auditory cues with clear directional information are key to efficient auditory guidance.

REFERENCES

  1. [1] Ahmetovic Dragan, Avanzini Federico, Baratè Adriano, Bernareggi Cristian, Galimberti Gabriele, Ludovico Luca A., Mascetti Sergio, and Presti Giorgio. 2019. Sonification of rotation instructions to support navigation of people with visual impairment. In IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE, 110. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Bauer Valentin, Nagele Anna, Baume Chris, Cowlishaw Tim, Cooke Henry, Pike Chris, and Healey Patrick G. T.. 2019. Designing an interactive and collaborative experience in audio augmented reality. In International Conference on Virtual Reality and Augmented Reality. Springer, 305311.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. [3] Begault Durand R.. 1991. Challenges to the successful implementation of 3-D sound. J. Audio Eng. Societ. 39, 11 (1991), 864870.Google ScholarGoogle Scholar
  4. [4] Begault Durand R. and Trejo Leonard J.. 2000. 3-D Sound for Virtual Reality and Multimedia. Academic Press, San Diego, CA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [5] Begault Durand R. and Wenzel Elizabeth M.. 1992. Techniques and applications for binaural sound manipulation. Int. J. Aviat. Psychol. 2, 1 (1992), 122. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Begault Durand R. and Wenzel Elizabeth M.. 1993. Headphone localization of speech. Hum. Fact. 35, 2 (1993), 361376. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Berger Christopher C., Gonzalez-Franco Mar, Tajadura-Jiménez Ana, Florencio Dinei, and Zhang Zhengyou. 2018. Generic HRTFs may be good enough in virtual reality. Improving source localization through cross-modal plasticity. Front. Neurosci. 12 (2018), 21. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Bill Gardner. 1994. HRTF measurements of a KEMAR dummy-head microphone. MIT Media Lab. Percept. Comput.-Technic. Rep. 280 (1994), 17.Google ScholarGoogle Scholar
  9. [9] Mena M. José Blanca, Postigo Rafael Alarcón, Gras Jaume Arnau, Cabré Roser Bono, and Bendayan Rebecca. 2017. Non-normal data: Is ANOVA still a valid option? Psicothema 29, 4 (2017), 552557. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Bormann Karsten. 2005. Presence and the utility of audio spatialization. Pres.: Teleop. Virt. Environ. 14, 3 (2005), 278297. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] Brown Lorna M., Brewster Stephen A., Ramloll S. A., Burton R., and Riedel Beate. 2003. Design guidelines for audio presentation of graphs and tables. In International Conference on Auditory Display.Google ScholarGoogle Scholar
  12. [12] Davis Elizabeth T., Scott Kevin, Pair Jarrell, Hodges Larry F., and Oliverio James. 1999. Can audio enhance visual perception and performance in a virtual environment? In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 43. Sage Publications, Los Angeles, CA, 11971201. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Oliveira Victor Adriel de Jesus, Brayda Luca, Nedel Luciana, and Maciel Anderson. 2017. Designing a vibrotactile head-mounted display for spatial awareness in 3D spaces. IEEE Trans. Visualiz. Comput. Graph. 23, 4 (2017), 14091417. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. [14] Doerr Kai-Uwe, Rademacher Holger, Huesgen Silke, and Kubbat Wolfgang. 2007. Evaluation of a low-cost 3D sound system for immersive virtual reality training systems. IEEE Trans. Visualiz. Comput. Graph. 13, 2 (2007), 204212. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. [15] Dubus Gaël and Bresin Roberto. 2013. A systematic review of mapping strategies for the sonification of physical quantities. PloS One 8, 12 (2013), e82491. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Fiannaca Alexander, Apostolopoulous Ilias, and Folmer Eelke. 2014. Headlock: A wearable navigation aid that helps blind cane users traverse large open spaces. In 16th International ACM SIGACCESS Conference on Computers & Accessibility. 1926. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. [17] Gröhn Matti, Lokki Tapio, and Takala Tapio. 2005. Comparison of auditory, visual, and audiovisual navigation in a 3D space. ACM Trans. Appl. Percept. 2, 4 (2005), 564570.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. [18] Gunther Ryan, Kazman Rick, and MacGregor Carolyn. 2004. Using 3D sound as a navigational aid in virtual environments. Behav. Inf. Technol. 23, 6 (2004), 435446. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Hart Sandra G.. 2006. NASA-task load index (NASA-TLX): 20 years later. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 50. Sage Publications, Los Angeles, CA, 904908. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Hebrank Jack and Wright Donald. 1974. Spectral cues used in the localization of sound sources on the median plane. J. Acoust. Societ. Amer. 56, 6 (1974), 18291834. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Heller Florian, Jevanesan Jayan, Dietrich Pascal, and Borchers Jan. 2016. Where are we? Evaluating the current rendering fidelity of mobile audio augmented reality systems. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services. 278282.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. [22] Holland Simon, Morse David R., and Gedenryd Henrik. 2002. AudioGPS: Spatial audio navigation with a minimal attention interface. Person. Ubiq. Comput. 6, 4 (2002), 253259. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. [23] Huber David Miles. 2020. The MIDI Manual: A Practical Guide to MIDI within Modern Music Production. Routledge.Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Jamal Yaseen, Lacey Simon, Nygaard Lynne, and Sathian Krishnankutty. 2017. Interactions between auditory elevation, auditory pitch and visual elevation during multisensory perception. Multisens. Res. 30, 3–5 (2017), 287306. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Katz Brian F. G., Kammoun Slim, Parseihian Gaëtan, Gutierrez Olivier, Brilhault Adrien, Auvray Malika, Truillet Philippe, Denis Michel, Thorpe Simon, and Jouffrais Christophe. 2012. NAVIG: Augmented reality guidance system for the visually impaired. Virt. Real. 16, 4 (2012), 253269. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. [26] Kolarik Andrew J., Moore Brian C. J., Cirstea Silvia, Raman Rajiv, Gopalakrishnan Sarika, and Pardhan Shahina. 2022. Partial visual loss disrupts the relationship between judged room size and sound source distance. Experim. Brain Res. (2022), 8196.Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Kolarik Andrew J., Raman Rajiv, Moore Brian C. J., Cirstea Silvia, Gopalakrishnan Sarika, and Pardhan Shahina. 2020. The accuracy of auditory spatial judgments in the visually impaired is dependent on sound source distance. Sci. Rep. 10, 1 (2020), 19.Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Lokki Tapio and Grohn Matti. 2005. Navigation with auditory cues in a virtual environment. IEEE MultiMed. 12, 2 (2005), 8086. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. [29] Loomis Jack M., Golledge Reginald G., and Klatzky Roberta L.. 1998. Navigation system for the blind: Auditory display modes and guidance. Presence 7, 2 (1998), 193203. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. [30] Marquardt Alexander, Trepkowski Christina, Eibich Tom David, Maiero Jens, and Kruijff Ernst. 2019. Non-visual cues for view management in narrow field of view augmented reality displays. In IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 190201. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Marquardt Alexander, Trepkowski Christina, Eibich Tom David, Maiero Jens, Kruijff Ernst, and Schöning Johannes. 2020. Comparing non-visual and visual guidance methods for narrow field of view augmented reality displays. IEEE Trans. Visualiz. Comput. Graph. 26, 12 (2020), 33893401. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Marston James R., Loomis Jack M., Klatzky Roberta L., and Golledge Reginald G.. 2007. Nonvisual route following with guidance from a simple haptic or auditory display. J. Visual Impair. Blind. 101, 4 (2007), 203211. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Mascetti Sergio, Picinali Lorenzo, Gerino Andrea, Ahmetovic Dragan, and Bernareggi Cristian. 2016. Sonification of guidance data during road crossing for people with visual impairments or blindness. Int. J. Hum.-comput. Stud. 85 (2016), 1626. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. [34] May Andrew J., Ross Tracy, Bayer Steven H., and Tarkiainen Mikko J.. 2003. Pedestrian navigation aids: Information requirements and design implications. Person. Ubiq. Comput. 7, 6 (2003), 331338. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. [35] Møller Henrik, Sørensen Michael Friis, Jensen Clemen Boje, and Hammershøi Dorte. 1996. Binaural technique: Do we need individual recordings? J. Audio Eng. Societ. 44, 6 (1996), 451469.Google ScholarGoogle Scholar
  36. [36] Neuhoff John G.. 2011. Perception, cognition and action in auditory displays. In The Sonification Handbook, Hermann Thomas, Hunt Andy, and Neuhoff John G (Eds.). Logos Verlag Berlin, 6385.Google ScholarGoogle Scholar
  37. [37] Parise Cesare V., Knorre Katharina, and Ernst Marc O.. 2014. Natural auditory scene statistics shapes human spatial hearing. Proc. Nat. Acad. Sci. 111, 16 (2014), 61046108. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] Parseihian Gaëtan, Aramaki Mitsuko, Ystad Sølvi, and Kronland-Martinet Richard. 2017. Sonification strategies for dynamic guidance tasks: Example with a driving game. In Proceedings of the 13th International Symposium on Computer Music Multidisciplinary Research (CMMR). 283294.Google ScholarGoogle Scholar
  39. [39] Parseihian Gaetan, Gondre Charles, Aramaki Mitsuko, Ystad Sølvi, and Kronland-Martinet Richard. 2016. Comparison and evaluation of sonification strategies for guidance tasks. IEEE Trans. Multim. 18, 4 (2016), 674686. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. [40] Prud’Homme Luna and Lavandier Mathieu. 2020. Do we need two ears to perceive the distance of a virtual frontal sound source? J. Acoust. Societ. Amer. 148, 3 (2020), 16141623.Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Schmider Emanuel, Ziegler Matthias, Danay Erik, Beyer Luzi, and Bühner Markus. 2010. Is it really robust? Methodology 6, 4 (2010), 147151. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Scholz Daniel S., Wu Liming, Pirzer Jonas, Schneider Johann, Rollnik Jens D., Großbach Michael, and Altenmüller Eckart O.. 2014. Sonification as a possible stroke rehabilitation strategy. Front. Neurosci. 8 (2014), 332.Google ScholarGoogle ScholarCross RefCross Ref
  43. [43] Shilling Russell D. and Shinn-Cunningham Barbara. 2002. Virtual auditory displays. In Handbook of Virtual Environments. CRC Press, 105132. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Spagnol Simone, Wersényi György, Bujacz Michał, Bălan Oana, Martínez Marcelo Herrera, Moldoveanu Alin, and Unnthorsson Runar. 2018. Current use and future perspectives of spatial audio technologies in electronic travel aids. Wirel. Commun. Mob. Comput. (2018). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. [45] Walker Bruce N. and Kramer Gregory. 2005. Mappings and metaphors in auditory displays: An experimental assessment. ACM Trans. Appl. Percept. 2, 4 (2005), 407412.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. [46] Walker Bruce N. and Lindsay Jeffrey. 2006. Navigation performance with a virtual auditory display: Effects of beacon sound, capture radius, and practice. Hum. Fact. 48, 2 (2006), 265278. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Walker Peter, Bremner James Gavin, Lunghi Marco, Dolscheid Sarah, Barba Beatrice D., and Simion Francesca. 2018. Newborns are sensitive to the correspondence between auditory pitch and visuospatial elevation. Devel. Psychobiol. 60, 2 (2018), 216223. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  48. [48] Wallach Hans. 1940. The role of head movements and vestibular and visual cues in sound localization. J. Experim. Psychol. 27, 4 (1940), 339. Google ScholarGoogle ScholarCross RefCross Ref
  49. [49] Wenzel Elizabeth M.. 1992. Localization in virtual acoustic displays. Pres.: Teleop. Virt. Environ. 1, 1 (1992), 80107. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Wenzel Elizabeth M., Arruda Marianne, Kistler Doris J., and Wightman Frederic L.. 1993. Localization using nonindividualized head-related transfer functions. J. Acoust. Societ. Amer. 94, 1 (1993), 111123. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Xie Bosun. 2013. Head-related Transfer Function and Virtual Auditory Display. J. Ross Publishing. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  52. [52] Zahorik Pavel. 2009. Perceptually relevant parameters for virtual listening simulation of small room acoustics. J. Acoust. Societ. Amer. 126, 2 (2009), 776791.Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Ziemer Tim and Schultheis Holger. 2018. A psychoacoustic auditory display for navigation. In International Conference on Auditory Display (ICAD).Google ScholarGoogle ScholarCross RefCross Ref
  54. [54] Ziemer Tim and Schultheis Holger. 2019. Psychoacoustical signal processing for three-dimensional sonification. In International Conference on Auditory Display (ICAD).Google ScholarGoogle ScholarCross RefCross Ref
  55. [55] Zotkin Dmitry N., Duraiswami Ramani, and Davis Larry S.. 2004. Rendering localized spatial audio in a virtual auditory space. IEEE Trans. Multim. 6, 4 (2004), 553564.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Exploring Sonification Mapping Strategies for Spatial Auditory Guidance in Immersive Virtual Environments

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Applied Perception
          ACM Transactions on Applied Perception  Volume 19, Issue 3
          July 2022
          83 pages
          ISSN:1544-3558
          EISSN:1544-3965
          DOI:10.1145/3543998
          Issue’s Table of Contents

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 September 2022
          • Online AM: 31 May 2022
          • Revised: 1 March 2022
          • Accepted: 1 March 2022
          • Received: 1 September 2021
          Published in tap Volume 19, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        View Full Text

        HTML Format

        View this article in HTML Format .

        View HTML Format