skip to main content
research-article

A clebsch method for free-surface vortical flow simulation

Published: 22 July 2022 Publication History

Abstract

We propose a novel Clebsch method to simulate the free-surface vortical flow. At the center of our approach lies a level-set method enhanced by a wave-function correction scheme and a wave-function extrapolation algorithm to tackle the Clebsch method's numerical instabilities near a dynamic interface. By combining the Clebsch wave function's expressiveness in representing vortical structures and the level-set function's ability on tracking interfacial dynamics, we can model complex vortex-interface interaction problems that exhibit rich free-surface flow details on a Cartesian grid. We showcase the efficacy of our approach by simulating a wide range of new free-surface flow phenomena that were impractical for previous methods, including horseshoe vortex, sink vortex, bubble rings, and free-surface wake vortices.

Supplemental Material

MP4 File
supplemental material
MP4 File
presentation
SRT File
presentation
ZIP File
supplemental material

References

[1]
M. Aanjaneya, S. Patkar, and R. Fedkiw. 2013. A monolithic mass tracking formulation for bubbles in incompressible flow. J. Comput. Phys. 247 (2013), 17--61.
[2]
H. Bateman. 1929. Notes on a differential equation that occurs in the two-dimensional motion of a compressible fluid and the associated variational problems. Proc. R. Soc. London Ser. A 125 (1929), 598--618.
[3]
N. Chentanez and M. Müller. 2011. Real-time Eulerian water simulation using a restricted tall cell grid. ACM Trans. Graph. 30 (2011), 10.
[4]
A. Chern. 2017. Fluid dynamics with incompressible Schrödinger flow. Ph.D. Dissertation. California Institute of Technology.
[5]
A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2017. Inside fluids: Clebsch maps for visualization and processing. ACM Trans. Graph. 36 (2017), 142.
[6]
A. Chern, F. Knöppel, U. Pinkall, P. Schröder, and S. Weißmann. 2016. Schrödinger's smoke. ACM Trans. Graph. 35 (2016), 77.
[7]
A. Clebsch. 1859. Ueber die Integration der hydrodynamischen Gleichungen. J. Reine Angew. Math. 56 (1859), 1--10.
[8]
M. Coquerelle and G. H. Cottet. 2008. A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227 (2008), 9121--9137.
[9]
C. Eckart. 1938. The electrodynamics of material media. Phys. Rev. 54 (1938), 920--923.
[10]
D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. 2002. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183 (2002), 83--116.
[11]
H. Ertel. 1942. Ein neuer hydrodynamischer Wirbelsatz. Wirbelsatz. Meteorol. Z. 59 (1942), 271--281.
[12]
R. Fedkiw and S. Osher. 2002. Level set methods and dynamic implicit surfaces. Surfaces 44 (2002), 77.
[13]
R. Fedkiw, J. Stam, and H. W. Jensen. 2001. Visual simulation of smoke. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques. 15--22.
[14]
R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher. 1999. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152 (1999), 457--492.
[15]
F. Gibou, R. Fedkiw, and S. Osher. 2018. A review of level-set methods and some recent applications. J. Comput. Phys. 353 (2018), 82--109.
[16]
J. Hao, S. Xiong, and Y. Yang. 2019. Tracking vortex surfaces frozen in the virtual velocity in non-ideal flows. J. Fluid Mech. 863 (2019), 513--544.
[17]
P. He and Y. Yang. 2016. Construction of initial vortex-surface fields and Clebsch potentials for flows with high-symmetry using first integrals. Phys. Fluids 28 (2016), 037101.
[18]
H. Helmholtz. 1858. Uber integrale der hydrodynamischen Gleichungen welche den Wirbel-bewegungen ensprechen. J. Reine Angew. Math 55 (1858), 25--55.
[19]
H. Hopf. 1931. Über die Abbildungen der Dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104 (1931), 637--665.
[20]
B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth. 2006. Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Trans. Graph. 25 (2006), 151--175.
[21]
D. L. Hu, B. Chan, and J. W. M. Bush. 2003. The hydrodynamics of water strider locomotion. Nature 424 (2003), 663--666.
[22]
L. Huang and D. L. Michels. 2020. Surface-only ferrofluids. ACM Trans. Graph. 39 (2020), 6.
[23]
L. Huang, Z. Qu, X. Tan, X. Zhang, D. L. Michels, and C. Jiang. 2021. Ships, splashes, and waves on a vast ocean. ACM Trans. Graph. 40 (2021), 203.
[24]
C. J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim, S. Kumar, A. P. Selle, J. Chhugani, M. Holliman, and Y. Chen. 2007. Physical simulation for animation and visual effects: parallelization and characterization for chip multiprocessors. SIGARCH Comput. Archit. News 35 (2007), 220--231.
[25]
C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The affine particle-in-cell method. ACM Trans. Graph. 34 (2015), 51.
[26]
H. Kedia, D. Foster, M. R. Dennis, and W. T. M. Irvine. 2016. Weaving knotted vector fields with tunable helicity. Phys. Rev. Lett. 117 (2016), 274501.
[27]
E. A. Kuznetsov and A. V. Mikhailov. 1980. On the topological meaning of canonical Clebsch variables. Phys. Lett. A 77 (1980), 37--38.
[28]
F. Losasso, R. Fedkiw, and S. Osher. 2006. Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35 (2006), 995--1010.
[29]
F. Losasso, F. Gibou, and R. Fedkiw. 2004. Simulating water and smoke with an octree data structure. In ACM Trans. Graph. 457--462.
[30]
F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14 (2008), 797--804.
[31]
R. W. MacCormack. 2003. The effect of viscosity in hypervelocity impact cratering. J. Spacecr. Rockets. 40 (2003), 757--763.
[32]
E. Madelung. 1926. Eine anschauliche Deutung der Gleichung von Schrödinger. Naturwissenschaften 14 (1926), 1004--1004.
[33]
E. Madelung. 1927. Quantentheorie in hydrodynamischer Form. Z. Phys. 40 (1927), 322--326.
[34]
H. Mazhar, T. Heyn, A. Pazouki, D. Melanz, A. Seidl, A. Bartholomew, A. Tasora, and D. Negrut. 2013. Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics. Mech. Sci. 4 (2013), 49--64.
[35]
R. I. McLachlan, C. Offen, and B. K. Tapley. 2019. Symplectic integration of PDEs using Clebsch variables. J. Comput. Dyn. 6 (2019), 111--130.
[36]
S. Mochizuki, K. Suzukawa, K. Saga, and H. Osaka. 2008. Vortex Structures around a Flat Paddle Impeller in a Stirred Vessel. J. Fluid Sci. 3 (2008), 241--249.
[37]
H. K. Moffatt. 1969. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35 (1969), 117--129.
[38]
J. J. Moreau. 1961. Constantes d'un îlot tourbillonnaire en fluide parfait barotrope. C. R. Acad. Sci. Paris 252 (1961), 2810--2812.
[39]
M. Müller, D. Charypar, and M. H. Gross. 2003. Particle-based fluid simulation for interactive applications. In Symposium on Computer Animation. 154--159.
[40]
S. Osher and R. P. Fedkiw. 2001. Level set methods: an overview and some recent results. J. Comput. Phys. 169 (2001), 463--502.
[41]
S. Osher and J. A. Sethian. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 160 (1988), 151--178.
[42]
M. Padilla, A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2019. On bubble rings and ink chandeliers. ACM Trans. Graph. 38 (2019), 1--14.
[43]
L. M. Pismen and L. M Pismen. 1999. Vortices in nonlinear fields: from liquid crystals to superfluids, from non-equilibrium patterns to cosmic strings. Vol. 100. Oxford University Press.
[44]
Z. Qu, X. Zhang, M. Gao, C. Jiang, and B. Chen. 2019. Efficient and conservative fluids using bidirectional mapping. ACM Trans. Graph. 38 (2019), 4.
[45]
N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. 22 (2003), 703--707.
[46]
R. Salmon. 1988. Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20 (1988), 225--256.
[47]
R. Saye. 2016. Interfacial gauge methods for incompressible fluid dynamics. Sci. Adv. 2 (2016), e1501869.
[48]
A. Selle, N. Rasmussen, and R. Fedkiw. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24 (2005), 910--914.
[49]
A. L. Sorokin. 2001. Madelung transformation for vortex flows of a perfect liquid. Dokl. Phys. 46 (2001), 576--578.
[50]
M. Sussman. 2003. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys. 187 (2003), 110--136.
[51]
R. Tao, H. Ren, Y. Tong, and S. Xiong. 2021. Construction and evolution of knotted vortex tubes in incompressible Schrödinger flow. Phys. Fluids 33 (2021), 077112.
[52]
G. I. Taylor and A. E. Green. 1937. Mechanism of the production of small eddies from large ones. Proc. Roy. Soc. Lond. A 158 (1937), 499--521.
[53]
W. Thomson. 1869. On vortex motion. Trans. R. Soc. Edinburgh 25 (1869), 217--260.
[54]
B. Tings and D. Velotto. 2018. Comparison of ship wake detectability on C-band and X-band SAR. Int. J. Remote Sens 39 (2018), 4451--4468.
[55]
K. Marten; K. Shariff; S. Psarakos; D. J. White. 1996. Ring bubbles of dolphins. Sci. Am. 275 (1996), 82.
[56]
J. Z. Wu, H. Y. Ma, and M. D. Zhou. 2006. Vorticity and Vortex Dynamics. Springer.
[57]
J. Z. Wu, H. Y. Ma, and M. D. Zhou. 2015. Vortical Flows. Springer.
[58]
S. Xiong, R. TAO, Y. Zhang, F. Feng, and B. ZHU. 2021. Incompressible Flow Simulation on Vortex Segment Clouds. ACM Trans. Graph. 40 (2021), 98.
[59]
S. Xiong and Y. Yang. 2017. The boundary-constraint method for constructing vortex-surface fields. J. Comput. Phys. 339 (2017), 31--45.
[60]
S. Xiong and Y. Yang. 2019a. Construction of knotted vortex tubes with the writhe-dependent helicity. Phys. Fluids 31 (2019), 047101.
[61]
S. Xiong and Y. Yang. 2019b. Identifying the tangle of vortex tubes in homogeneous isotropic turbulence. J. Fluid Mech. 874 (2019), 952--978.
[62]
S. Xiong and Y. Yang. 2020. Effects of twist on the evolution of knotted magnetic flux tubes. J. Fluid Mech. 895 (2020), A28.
[63]
S. Yang, S. Xiong, Y. Zhang, F. Feng, J. Liu, and B. Zhu. 2021. Clebsch gauge fluid. ACM Trans. Graph. 40 (2021), 99.
[64]
Y. Yang and D. I. Pullin. 2010. On Lagrangian and vortex-surface fields for flows with Taylor-Green and Kida-Pelz initial conditions. J. Fluid Mech. 661 (2010), 446--481.
[65]
Y. Yang and D. I. Pullin. 2011. Evolution of vortex-surface fields in viscous Taylor-Green and Kida-Pelz flows. J. Fluid Mech. 685 (2011), 146--164.
[66]
X. Zhang and R. Bridson. 2014. A PPPM fast summation method for fluids and beyond. ACM Trans. Graph. 33 (2014), 6.
[67]
Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24 (2005), 965--972.

Cited By

View all
  • (2025)Smoke Simulation with Detail Enhancement in Ship FiresJournal of Marine Science and Engineering10.3390/jmse1301010113:1(101)Online publication date: 7-Jan-2025
  • (2024)An Eulerian Vortex Method on Flow MapsACM Transactions on Graphics10.1145/368799643:6(1-14)Online publication date: 19-Dec-2024
  • (2024)Fluid Implicit Particles on Coadjoint OrbitsACM Transactions on Graphics10.1145/368797043:6(1-38)Online publication date: 19-Dec-2024
  • Show More Cited By

Index Terms

  1. A clebsch method for free-surface vortical flow simulation

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 41, Issue 4
    July 2022
    1978 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3528223
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 July 2022
    Published in TOG Volume 41, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. bubble ring
    2. clebsch representation
    3. free-surface fluid
    4. horseshoe vortex
    5. level set

    Qualifiers

    • Research-article

    Funding Sources

    • NSF

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)91
    • Downloads (Last 6 weeks)5
    Reflects downloads up to 06 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Smoke Simulation with Detail Enhancement in Ship FiresJournal of Marine Science and Engineering10.3390/jmse1301010113:1(101)Online publication date: 7-Jan-2025
    • (2024)An Eulerian Vortex Method on Flow MapsACM Transactions on Graphics10.1145/368799643:6(1-14)Online publication date: 19-Dec-2024
    • (2024)Fluid Implicit Particles on Coadjoint OrbitsACM Transactions on Graphics10.1145/368797043:6(1-38)Online publication date: 19-Dec-2024
    • (2024)Solid-Fluid Interaction on Particle Flow MapsACM Transactions on Graphics10.1145/368795943:6(1-20)Online publication date: 19-Dec-2024
    • (2024)Eulerian-Lagrangian Fluid Simulation on Particle Flow MapsACM Transactions on Graphics10.1145/365818043:4(1-20)Online publication date: 19-Jul-2024
    • (2024)Lagrangian Covector Fluid with Free SurfaceACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657514(1-10)Online publication date: 13-Jul-2024
    • (2024)Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent FlowsComputer Graphics Forum10.1111/cgf.1502443:2Online publication date: 30-Apr-2024
    • (2024)Quantum spin representation for the Navier-Stokes equationPhysical Review Research10.1103/PhysRevResearch.6.0431306:4Online publication date: 13-Nov-2024
    • (2024)Lagrangian dynamics and regularity of the spin Euler equationJournal of Fluid Mechanics10.1017/jfm.2024.319985Online publication date: 24-Apr-2024
    • (2024)A unified particle method for fluid simulation in ship fire scenarioOcean Engineering10.1016/j.oceaneng.2024.119266312(119266)Online publication date: Nov-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media