skip to main content
research-article

Vibrotactile Threshold Measurements at the Wrist Using Parallel Vibration Actuators

Published:02 September 2022Publication History
Skip Abstract Section

Abstract

This article presents an investigation into the perceptual vibrotactile thresholds for a range of frequencies on both the inside and outside areas of the wrist when exciting the skin with parallel vibrations, realized using the L5 actuator made by Lofelt GmbH. The vibrotactile threshold of 30 participants was measured using a modified audiometry test for the frequency range of 25–1,000 Hz. The average threshold across the respective frequencies was then ultimately determined from acceleration minima. The results show that maximum sensitivity lies in the range of 100–275 Hz (peaking at 200 Hz) for the inside and 75–250 Hz (peaking at 125 Hz) for the outside of the wrist and that thresholds are overall higher for the hairy skin on the outside of the wrist than for the glabrous skin on the inside. The results also show that the vibrotactile thresholds varied highly between individuals. Hence, personalized threshold measurements at the actuator locations will be required to fine-tune a device for the user. This study is a part of an ongoing research and development project where the aim is to develop a tactile display device and a music encoding scheme with the purpose of augmenting the musical enjoyment of cochlear implant recipients. These results, along with results from planned follow-up experiments, will be used to determine the appropriate frequency range and to cast light on the dynamic range on offer for the tactile device.

REFERENCES

  1. [1] L5 Actuator. 2020. Retrieved Aug. 1, 2020 from https://lofelt.com/technology.Google ScholarGoogle Scholar
  2. [2] Bolanowski S., Gescheider George, Verrillo R., and Checkosky C.. 1988. Four channels mediate the mechanical aspects of touch. J. Acoust. Societ. Amer. 84 (12 1988), 1680–94. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Bolanowski S. J., Gescheider G. A., and Verillo R. T.. 1994. Hairy skin: Psychophysical channels and their physiological substrates. Somatosens Mot. Res. 11, 3 (1994), 279290. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] A. J. Brisben, S. S. Hsiao, and K. O. Johnson. 1994. Detection of vibration transmitted through an object grasped in the hand. J. Neurophysiol. 81, 4 (Apr. 1994), 1548–1558. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Caldwell Meredith T., Jiradejvong Patpong, and Limb Charles J.. 2016. Impaired perception of sensory consonance and dissonance in cochlear implant users. Otol. Neurotol. 37,3 (Mar. 2016), 229234. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Craig James C.. 1968. Vibrotactile spatial summation. Percept. Psychophys. 4 (1968), 351354. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Donahue A. M. and Letowski T.. 1985. Vibrotactile performance by normal and hearing-impaired subjects using two commercially available vibrators. Audiology 24, 5 (1985), 362373. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Goble Alan K., Collins Amy A., and Cholewiak Roger W.. 1996. Vibrotactile threshold in young and old observers: The effects of spatial summation and the presence of a rigid surround. J. Acoust. Societ. Amer. 99 (1996), 22562269. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Grassi Massimo and Soranzo Alessandro. 2009. MLP: A MATLAB toolbox for rapid and reliable auditory threshold estimation. Behav. Res. Meth. 41, 1 (2009), 2128. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Green David M.. 1993. A maximum-likelihood method for estimating thresholds in a yes-no task. J. Acoust. Societ. Amer. 93 (1993), 20962105. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Hoffmann Rebekka, Brinkhuis Manje, Unnthorsson Runar, and Kristjánsson Árni. 2019. The intensity order illusion: Temporal order of different vibrotactile intensity causes systematic localization errors. J. Neurophys. (2019).Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Rebekka Hoffmann, Manje Brinkhuis, Runar Unnthorsson, and Árni Kristjánsson. 2019. The intensity order illusion: Temporal order of different vibrotactile intensity causes systematic localization errors. J. Neurophysiol. 122, 4 (Oct. 2019), 1810–1820. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Jóhannesson Ómar I., Balan Oana, Unnthorsson Runar, Moldoveanu Alin, and Kristjánsson Árni. 2016. The sound of vision project: On the feasibility of an audio-haptic representation of the environment, for the visually impaired. Brain Sci. 6, 3 (2016), 120. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Jóhannesson Ómar I., Hoffmann Rebekka, Valgeirsdóttir Vigdís Vala, Unnthorsson Runar, Moldoveanu Alin, and Kristjánsson Árni. 2017. Relative vibrotactile spatial acuity of the torso. Experim. Brain Res. 235, 11 (2017), 35053515. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  15. [15] Kristjánsson Árni, Moldoveanu Alin, Jóhannesson Ómar I., Balan Oana, Spagnol Simone, Valgeirsdóttir Vigdís Vala, and Unnthorsson Runar. 2016. Designing sensory-substitution devices: Principles, pitfalls and potential. Restor. Neurol. Neurosci. 34, 5 (Sep. 2016), 769787. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Landsberger David M., Padilla Monica, and Srinivasan Arthi G.. 2012. Reducing current spread using current focusing in cochlear implant users. Hear. Res. 284, 1 (2012), 1624. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Lee J., Han J., and Lee G.. 2015. Investigating the information transfer efficiency of a 3x3 watch-back tactile display. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. 12291232.Google ScholarGoogle Scholar
  18. [18] Lofelt GmbH. 2019. Lofelt L5 actuator. L5 datasheet, Jan. 2019 [revised Jul. 2019].Google ScholarGoogle Scholar
  19. [19] Looi Valerie, McDermott Hugh, McKay Colette, and Hickson Louise. 2004. Pitch discrimination and melody recognition by cochlear implant users. Int. Congr. Series 1273 (2004), 197200. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Jack M. Loomis, Roberta Klatzky, and Nicholas Giudice. 2012. Sensory Substitution of Vision: Importance of Perceptual and Cognitive Processing. In Assistive Technology for Blindness and Low Vision, R. Manduchi and S. Kurniawan (Eds.). CRC Press, 162–191.Google ScholarGoogle Scholar
  21. [21] Mahns D. A., Perkins N. M., Sahai V., Robinson L., and Rowe M. J.. 2006. Vibrotactile frequency discrimination in human hairy skin. J. Neurophys. 95, 3 (2006), 14421450. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Makarov I., Ævarsson E. A., Pind F., Yeganeh N., Unnthorsson R., and Kristjansson A.. 2022. The haptic intensity order illusion is caused by amplitude changes. Manuscript submitted for publication (2022).Google ScholarGoogle Scholar
  23. [23] Mancini F., Bauleo A., Cole J., Lui F., Porro C. A., Haggard P., and Iannetti G. D.. 2014. Whole-body mapping of spatial acuity for pain and touch. Ann. Neurol. 75, 6 (2014), 917924. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Marozeau Jeremy and Lamping Wiebke. 2019. Timbre Perception with Cochlear Implants. Springer, 273293. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Piccinin M. A., Miao J. H., and Schwartz J.. 2020. Histology, Meissner corpuscle. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK518980/.Google ScholarGoogle Scholar
  26. [26] Quindlen Julia C., Lai Victor K., and Barocas Victor H.. 2015. Multiscale mechanical model of the Pacinian corpuscle shows depth and anisotropy contribute to the Receptor’s characteristic response to indentation. PLoS Computat. Biol. 11, 9 (09 2015), 116. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Renier Laurent and Volder Anne G. De. 2013. Sensory substitution devices: Creating “artificial synesthesias.” Oxford Handb. Synesth. (Dec. 2013). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Sofia Katherine O. and Jones Lynette A.. 2013. Mechanical and psychophysical studies of surface wave propagation during vibrotactile stimulation. IEEE Trans. Hapt. 6, 3 (Jul. 2013), 320329. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. [29] Verrillo R. T.. 1963. Effect of contactor area on the vibrotactile threshold. J. Acoust. Societ. Amer. 35, 12 (Dec. 1963). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Verrillo R. T.. 1971. Vibrotactile thresholds measured at the finger. Percept. Psychophys. 9 (1971), 329330. DOI:Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Vibrotactile Threshold Measurements at the Wrist Using Parallel Vibration Actuators

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Applied Perception
      ACM Transactions on Applied Perception  Volume 19, Issue 3
      July 2022
      83 pages
      ISSN:1544-3558
      EISSN:1544-3965
      DOI:10.1145/3543998
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 2 September 2022
      • Online AM: 27 May 2022
      • Accepted: 1 March 2022
      • Revised: 1 January 2022
      • Received: 1 January 2021
      Published in tap Volume 19, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text

    HTML Format

    View this article in HTML Format .

    View HTML Format