skip to main content
10.1145/3529446.3529450acmotherconferencesArticle/Chapter ViewAbstractPublication PagesipmvConference Proceedingsconference-collections
research-article

Group Sparse-based Discriminative Feature Learning for Face Recognition

Authors Info & Claims
Published:15 July 2022Publication History

ABSTRACT

The rapid development of facial recognition technology has brought great convenience to daily life, but also serious security risks, especially in the case of occlusion and loud noise. Faced with this limitation, this letter proposes a fast face recognition framework called a Group Sparse-based Discriminative Feature Learning (GSDFL-Net). Specifically, GSDFL-Net uses a novel unified objective function to simultaneously learn the discriminant features, sparse code and classification errors. In the proposed framework, the feature projection is incorporated into GSDFL-Net model, which reduces the classification errors. Then, we integrate denoising FFDNet into the proposed GS FL-Net model to penalize the noisy pixels, which is simultaneously learned by our unified objective function. Besides, we derive an optimization mechanism to encourage obtained learning parameters and decrease the information loss. Extensive experiments demonstrate the effectiveness of the proposed scheme under different including occlusion random noise conditions on the famous Aleix Martinez and ExYale B database.

References

  1. He, R., Wu, X., Sun, Z., & Tan, T. (2018). Wasserstein cnn: Learning invariant features for nir-vis face recognition. IEEE transactions on pattern analysis and machine intelligence, 41(7), 1761-1773.Google ScholarGoogle Scholar
  2. Zhong, Y., Chen, J., & Huang, B. (2017). Toward end-to-end face recognition through alignment learning. IEEE signal processing letters, 24(8), 1213-1217.Google ScholarGoogle Scholar
  3. Gao, S., Zhang, Y., Jia, K., Lu, J., & Zhang, Y. (2015). Single sample face recognition via learning deep supervised autoencoders. IEEE transactions on information forensics and security, 10(10), 2108-2118.Google ScholarGoogle Scholar
  4. Li, P., Prieto, M. L., Flynn, P. J., & Mery, D. (2017, October). Learning face similarity for re-identification from real surveillance video: A deep metric solution. In 2017 IEEE International Joint Conference on Biometrics (IJCB) (pp. 243-252). IEEE.Google ScholarGoogle Scholar
  5. He, R., Cao, J., Song, L., Sun, Z., & Tan, T. (2019). Adversarial cross-spectral face completion for NIR-VIS face recognition. IEEE transactions on pattern analysis and machine intelligence, 42(5), 1025-1037.Google ScholarGoogle Scholar
  6. Atoum, Y., Liu, Y., Jourabloo, A., & Liu, X. (2017, October). Face anti-spoofing using patch and depth-based CNNs. In 2017 IEEE International Joint Conference on Biometrics (IJCB) (pp. 319-328). IEEE.Google ScholarGoogle Scholar
  7. Deng, W., Hu, J., & Guo, J. (2012). Extended SRC: Undersampled face recognition via intraclass variant dictionary. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9), 1864-1870.Google ScholarGoogle Scholar
  8. Chen, Z., Fu, Y., Xiang, Y., & Rong, R. (2017). A novel iterative shrinkage algorithm for CS-MRI via adaptive regularization. IEEE Signal Processing Letters, 24(10), 1443-1447.Google ScholarGoogle Scholar
  9. Chen, Z., Fu, Y., Xiang, Y., & Zhu, Y. (2021). A novel MR image denoising via LRMA and NLSS. Signal Processing, 185, 108109.Google ScholarGoogle Scholar
  10. Chen, Z., Huang, C., & Lin, S. (2020). A new sparse representation framework for compressed sensing MRI. Knowledge-Based Systems, 188, 104969.Google ScholarGoogle Scholar
  11. Chen, Z., Fu, Y., Xiang, Y., Xu, J., & Rong, R. (2018). A novel low-rank model for MRI using the redundant wavelet tight frame. Neurocomputing, 289, 180-187.Google ScholarGoogle Scholar
  12. Chen, Z., Zhou, Z., & Adnan, S. (2021). Joint low-rank prior and difference of Gaussian filter for magnetic resonance image denoising. Medical & Biological Engineering & Computing, 59(3), 607-620.Google ScholarGoogle Scholar
  13. Chen, Z., Hu. J, Qiu. X, Jiang. W, Kernel ridge regression-based TV regularization for motion correction of dynamic MRI, Signal Processing (2022), doi: https://doi.org/10.1016/j.sigpro.2022.108559.Google ScholarGoogle Scholar
  14. Masi, I., Rawls, S., Medioni, G., & Natarajan, P. (2016). Pose-aware face recognition in the wild. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4838-4846).Google ScholarGoogle Scholar
  15. Zhang, Z., Li, F., Chow, T. W., Zhang, L., & Yan, S. (2016). Sparse codes auto-extractor for classification: A joint embedding and dictionary learning framework for representation. IEEE Transactions on Signal Processing, 64(14), 3790-3805.Google ScholarGoogle Scholar
  16. Zhang, Z., Jiang, W., Qin, J., Zhang, L., Li, F., Zhang, M., & Yan, S. (2017). Jointly learning structured analysis discriminative dictionary and analysis multiclass classifier. IEEE transactions on neural networks and learning systems, 29(8), 3798-3814.Google ScholarGoogle Scholar
  17. Choi, J. Y., & Lee, B. (2019). Ensemble of deep convolutional neural networks with Gabor face representations for face recognition. IEEE Transactions on Image Processing, 29, 3270-3281.Google ScholarGoogle Scholar
  18. Zhu, X., Li, S., Zhang, X., Li, H., & Kot, A. C. (2019). Detection of spoofing medium contours for face anti-spoofing. IEEE Transactions on Circuits and Systems for Video Technology, 31(5), 2039-2045.Google ScholarGoogle Scholar
  19. Boulkenafet, Z., Komulainen, J., & Hadid, A. (2016). Face antispoofing using speeded-up robust features and fisher vector encoding. IEEE Signal Processing Letters, 24(2), 141-145.Google ScholarGoogle Scholar
  20. Zheng, J., Yang, P., Chen, S., Shen, G., & Wang, W. (2017). Iterative re-constrained group sparse face recognition with adaptive weights learning. IEEE transactions on image processing, 26(5), 2408-2423.Google ScholarGoogle Scholar
  1. Group Sparse-based Discriminative Feature Learning for Face Recognition

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      IPMV '22: Proceedings of the 4th International Conference on Image Processing and Machine Vision
      March 2022
      121 pages
      ISBN:9781450395823
      DOI:10.1145/3529446

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 15 July 2022

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)7
      • Downloads (Last 6 weeks)1

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format