skip to main content
10.1145/3529466.3529475acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiciaiConference Proceedingsconference-collections
research-article

Mixture Density Hyperspherical Generative Adversarial Networks

Published:04 June 2022Publication History

ABSTRACT

The Generative Adversarial Networks (GANs) are deep generative models that can generate realistic samples, but they are difficult to train in practice due to the problem of mode collapse, where the generator only repeatedly generates one mode in samples during the learning process, or only generates a small number of modes after reaching the Nash equilibrium during the adversarial training. In order to solve this issue while making the generator contains promising generation ability, we propose a mixture density hyperspherical generative model namely MDH-GAN that combines variational autoencoder (VAE) and generative adversarial network. Unlike most of the GAN-based generative models that consider a Gaussian prior, MDH-GAN adopts the von Mises-Fisher (vMF) prior defined on a unit hypersphere. Our model combines VAE with GAN by integrating the encoder of VAE with GAN to form a jointly training framework. Therefore, the generator of our model can learn data distribution with a hyperspherical latent structure, leading to an improved generative ability of the generator. Moreover, a vMF mixture model is deployed in the discriminator to form a hypersphere space to avoid mode collapse of the model. In our experiments, by calculating the Fréchet Inception distance (FID) between the generated images and real ones, we prove that MDH-GAN has a better ability to generate high-quality images with high diversity.

References

  1. Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. In the Conference on Neural Information Processing Systems.Google ScholarGoogle Scholar
  2. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.Google ScholarGoogle Scholar
  3. Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative adversarial networks. In International Conference on Learning Representations.Google ScholarGoogle Scholar
  4. Mescheder, L., Nowozin, S., & Geiger, A. (2017). The numerics of gans. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 1823–1833).Google ScholarGoogle Scholar
  5. Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks. In International conference on machine learning (pp. 214-223). PMLR.Google ScholarGoogle Scholar
  6. Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky, M., & Courville, A. (2016). Adversarially learned inference. In the 29th Conference on Neural Information Processing Systems.Google ScholarGoogle Scholar
  7. Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In the 2nd International Conference on Learning Representations.Google ScholarGoogle Scholar
  8. Rezende, D. J., Mohamed, S., & Wierstra, D. (2014, June). Stochastic backpropagation and approximate inference in deep generative models. In International conference on machine learning (pp. 1278-1286). PMLR.Google ScholarGoogle Scholar
  9. Metz, L., Poole, B., Pfau, D., & Sohl-Dickstein, J. (2017). Unrolled generative adversarial networks. In the 5th International Conference on Learning Representations.Google ScholarGoogle Scholar
  10. Diggle, P. J., & Gratton, R. J. (1984). Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society: Series B (Methodological), 46(2), 193-212.Google ScholarGoogle Scholar
  11. Srivastava, A., Valkov, L., Russell, C., Gutmann, M. U., & Sutton, C. (2017, December). Veegan: Reducing mode collapse in gans using implicit variational learning. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 3310-3320).Google ScholarGoogle Scholar
  12. Eghbal-zadeh, H., Zellinger, W., & Widmer, G. (2019). Mixture density generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5820-5829).Google ScholarGoogle Scholar
  13. Xu, J., & Durrett, G. (2018). Spherical Latent Spaces for Stable Variational Autoencoders. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 4503-4513).Google ScholarGoogle Scholar
  14. Banerjee, A., Dhillon, I. S., Ghosh, J., Sra, S., & Ridgeway, G. (2005). Clustering on the Unit Hypersphere using von Mises-Fisher Distributions. Journal of Machine Learning Research, 6(9).Google ScholarGoogle Scholar
  15. Fisher, N. I., Lewis, T., & Embleton, B. J. J. (1987). Statistical analysis of spherical data. Cambridge: University Press.Google ScholarGoogle ScholarCross RefCross Ref
  16. Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J. M. (2018, January). Hyperspherical variational auto-encoders. In 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018 (pp. 856-865). Association For Uncertainty in Artificial Intelligence (AUAI).Google ScholarGoogle Scholar
  17. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems, 30.Google ScholarGoogle Scholar
  18. Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics, New York: Wiley.Google ScholarGoogle Scholar
  19. Mardia, K. V. (1975). Statistics of directional data. Journal of the Royal Statistical Society. Series B (Methodological), pages 349–393.Google ScholarGoogle ScholarCross RefCross Ref
  20. Taghia, J., Ma, Z., & Leijon, A. (2014). Bayesian estimation of the von-mises fisher mixture model with variational inference. IEEE Transactions on Pattern Analysis & Machine Intelligence, 36(9), 1701-15.Google ScholarGoogle ScholarCross RefCross Ref
  21. Fan, W., & Bouguila, N. (2020). Spherical data clustering and feature selection through nonparametric Bayesian mixture models with von Mises distributions. Engineering Applications of Artificial Intelligence, 94(4), 103781.Google ScholarGoogle ScholarCross RefCross Ref
  22. Fan, W., Yang, L., Bouguila, N., & Chen, Y. (2020). Sequentially spherical data modeling with hidden Markov models and its application to fMRI data analysis. Knowledge-Based Systems, 206, 106341.Google ScholarGoogle ScholarCross RefCross Ref
  23. Kim, M. (2021). On PyTorch Implementation of Density Estimators for von Mises-Fisher and Its Mixture. arXiv preprint arXiv:2102.05340.Google ScholarGoogle Scholar
  24. Monatsh, K. G. (1907). Mehrdimensionale geometrie. Monatshefte für Mathematik und Physik.Google ScholarGoogle Scholar
  25. Larsen, A. B. L., Sønderby, S. K., Larochelle, H., & Winther, O. (2016, June). Autoencoding beyond pixels using a learned similarity metric. In International conference on machine learning (pp. 1558-1566). PMLR.Google ScholarGoogle Scholar
  26. Lamb, A., Dumoulin, V., & Courville, A. (2016). Discriminative regularization for generative models. arXiv preprint arXiv:1602.03220.Google ScholarGoogle Scholar
  27. Dosovitskiy, A., & Brox, T. (2016). Generating images with perceptual similarity metrics based on deep networks. Advances in neural information processing systems, 29, 658-666.Google ScholarGoogle Scholar
  28. Nalisnick, E., & Smyth, P. (2017). Stick-breaking variational autoencoders. In the 5th International Conference on Learning Representations.Google ScholarGoogle Scholar
  29. Ulrich, G. (1984). Computer Generation of Distributions on the M‐Sphere. Journal of the Royal Statistical Society: Series C (Applied Statistics), 33(2), 158-163.Google ScholarGoogle Scholar
  30. LeCun, Y. (1998). The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/Google ScholarGoogle Scholar
  31. Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.Google ScholarGoogle Scholar
  32. Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. https://www.cs.toronto.edu/∼kriz/cifar.htmlGoogle ScholarGoogle Scholar
  33. Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In Proceedings of the IEEE international conference on computer vision (pp. 3730-3738).Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. (2017, December). Improved training of wasserstein GANs. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 5769-5779).Google ScholarGoogle Scholar
  35. Kodali, N., Abernethy, J., Hays, J., & Kira, Z. (2018). On convergence and stability of gans. In the 6th International Conference on Learning Representations.Google ScholarGoogle Scholar
  36. Berthelot, D., Schumm, T., & Metz, L. (2017). Began: Boundary equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717.Google ScholarGoogle Scholar
  37. Lucic, M., Kurach, K., Michalski, M., Gelly, S., & Bousquet, O. (2018). Are gans created equal? a large-scale study. In Advances in neural information processing systems (pp. 700-709).Google ScholarGoogle Scholar
  38. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. Advances in neural information processing systems, 29, 2234-2242.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICIAI '22: Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence
    March 2022
    240 pages
    ISBN:9781450395502
    DOI:10.1145/3529466

    Copyright © 2022 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 4 June 2022

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)18
    • Downloads (Last 6 weeks)1

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format