skip to main content
survey

Heterogeneous Network Access and Fusion in Smart Factory: A Survey

Published: 07 December 2022 Publication History

Abstract

With the continuous expansion of the Industrial Internet of Things (IIoT) and the increasing connectivity among the various intelligent devices or systems, the control of access and fusion in smart factory networks has significantly gained importance. However, the contradiction between the high Quality of Service (QoS) requirements of massive data and the limited network bandwidth and the heterogeneous network is becoming deeper and deeper. The heterogeneity of smart factory networks brings many challenges to unified access and fusion, real-time transmission, and centralized control and management. This article provides a survey on heterogeneous networks in smart factories. We first study and discuss the heterogeneity of smart factory networks, and then discuss the existing mainstream wired and wireless network technologies, as well as promising future technologies, including 5G, OLE for Process Control Unified Architecture (OPC UA), and Time-Sensitive Networking (TSN). In addition, we also analyze current heterogeneous network fusion architecture and discuss the enabling technologies of heterogeneous network fusion in view of the shortcoming of the current solutions. Finally, we conclude with a discussion of open challenges and future research directions towards the effective realization of the smart factory.

References

[1]
S. Wang, J. Wan, D. Li, and C. Zhang. 2016. Implementing smart factory of industrie 4.0: An outlook. International Journal of Distributed Sensor Networks 12, 1 (2016), 3159805.
[2]
X. Xu and Q. Hua. 2017. Industrial big data analysis in smart factory: Current status and research strategies. IEEE Access 5 (2017), 17543–17551.
[3]
M. M. Mabkhot, A. M. Al-Ahmari, B. Salah, and H. Alkhalefah. 2018. Requirements of the smart factory system: A survey and perspective. Machines 6, 2 (2018), 23.
[4]
E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund. 2018. Industrial internet of things: Challenges, opportunities, and directions. IEEE Transactions on Industrial Informatics 14, 11 (2018), 4724–4734.
[5]
L. Atzori, A. Iera, and G. Morabito. 2010. The internet of things: A survey. Computer Networks 54, 15 (2010), 2787–2805.
[6]
A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama. 2021. A comprehensive survey on interoperability for IIoT: Taxonomy, standards, and future directions. ACM Computing Surveys 55, 1 (2021), 1–35. DOI:
[7]
J.-Q. Li, F. R. Yu, G. Deng, C. Luo, Z. Ming, and Q. Yan. 2017. Industrial internet: A survey on the enabling technologies, applications, and challenges. IEEE Communications Surveys & Tutorials 19, 3 (2017), 1504–1526.
[8]
T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu. 2020. Edge computing in industrial internet of things: Architecture, advances and challenges. IEEE Communications Surveys & Tutorials 22, 4 (2020), 2462–2488.
[9]
T. P. Raptis, A. Passarella, and M. Conti. 2020. A survey on industrial Internet with ISA100 wireless. IEEE Access 8 (2020), 157177–157196.
[10]
B. Varghese and R. Buyya. 2018. Next generation cloud computing: New trends and research directions. Future Generation Computer Systems 79 (2018), 849–861.
[11]
J. Wan, J. Yang, Z. Wang, and Q. Hua. 2018. Artificial intelligence for cloud-assisted smart factory. IEEE Access 6 (2018), 55419–55430.
[12]
S.-T. Park, G. Li, and J.-C. Hong. 2020. A study on smart factory-based ambient intelligence context-aware intrusion detection system using machine learning. Journal of Ambient Intelligence and Humanized Computing 11, 4 (2020), 1405–1412.
[13]
B.-h. Li, B.-c. Hou, W.-t. Yu, X.-b. Lu, and C.-w. Yang. 2017. Applications of artificial intelligence in intelligent manufacturing: A review. Frontiers of Information Technology & Electronic Engineering 18, 1 (2017), 86–96.
[14]
J. Wan, X. Li, H.-N. Dai, A. Kusiak, M. Martínez-García, and D. Li. 2021. Artificial-intelligence-driven customized manufacturing factory: Key technologies, applications, and challenges. Proceedings of the IEEE 109, 4 (2021), 377–398.
[15]
B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin. 2017. Smart factory of industry 4.0: Key technologies, application case, and challenges. IEEE Access 6 (2017), 6505–6519.
[16]
S. Vitturi, C. Zunino, and T. Sauter. 2019. Industrial communication systems and their future challenges: Next-generation Ethernet, IIoT, and 5G. Proceedings of the IEEE 107, 6 (2019), 944–961.
[17]
X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang. 2017. A review of industrial wireless networks in the context of industry 4.0. Wireless Networks 23, 1 (2017), 23–41.
[18]
L. Underberg, R. Kays, S. Dietrich, and G. Fohler. 2018. Towards hybrid wired-wireless networks in industrial applications. In Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems. IEEE, 2018, 768–773.
[19]
M. Wollschlaeger, T. Sauter, and J. Jasperneite. 2017. The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Industrial Electronics Magazine 11, 1 (2017), 17–27.
[20]
S. K. Panda, M. Majumder, L. Wisniewski, and J. Jasperneite. 2020. Real-time industrial communication by using OPC UA field level communication. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation. IEEE, 1 (2020), 1143–1146.
[21]
J. Wan, S. Tang, D. Li, S. Wang, C. Liu, H. Abbas, and A. V. Vasilakos. 2017. A manufacturing big data solution for active preventive maintenance. IEEE Transactions on Industrial Informatics 13, 4 (2017), 2039–2047.
[22]
D. Bruckner, M.-P. Stănică, R. Blair, S. Schriegel, S. Kehrer, M. Seewald, and T. Sauter. 2019. An introduction to OPC UA TSN for industrial communication systems. Proceedings of the IEEE 107, 6 (2019), 1121–1131.
[23]
K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni. 2020. A systematic survey of industrial Internet of Things security: Requirements and fog computing opportunities. IEEE Communications Surveys & Tutorials 22, 4 (2020), 2489–2520.
[24]
H. Trifonov and D. Heffernan. 2021. OPC UA TSN: A next-generation network for Industry 4.0 and IIoT. International Journal of Pervasive Computing and Communications, Emerald Publishing Ltd. DOI:
[25]
G. Chen, P. Wang, B. Feng, Y. Li, and D. Liu. 2020. The framework design of smart factory in discrete manufacturing industry based on cyber-physical system. International Journal of Computer Integrated Manufacturing 33, 1 (2020), 79–101.
[26]
Z. Shi, Y. Xie, W. Xue, Y. Chen, L. Fu, and X. Xu. 2020. Smart factory in Industry 4.0. Systems Research and Behavioral Science 37, 4 (2020), 607–617.
[27]
Q. Wang and J. Jiang. 2016. Comparative examination on architecture and protocol of industrial wireless sensor network standards. IEEE Communications Surveys & Tutorials 18, 3 (2016), 2197–2219.
[28]
Y. Duroc and S. Tedjini. 2018. RFID: A key technology for Humanity. Comptes Rendus Physique 19, 1–2 (2018), 64–71.
[29]
S. Wang, J. Ouyang, D. Li, and C. Liu. 2017. An integrated industrial ethernet solution for the implementation of smart factory. IEEE Access 5 (2017), 25455–25462.
[30]
J. R. Moyne and D. M. Tilbury. 2007. The emergence of industrial control networks for manufacturing control, diagnostics, and safety data. Proceedings of the IEEE 95, 1 (2007), 29–47.
[31]
B. Galloway and G. P. Hancke. 2013. Introduction to industrial control networks. IEEE Communications Surveys & Tutorials 15, 2 (2013), 860–880.
[32]
J.-P. Thomesse. 2005. Fieldbus technology in industrial automation. Proceedings of the IEEE 93, 6 (2005), 1073–1101.
[33]
T. Sauter. 2010. The three generations of field-level networks—Evolution and compatibility issues. IEEE Transactions on Industrial Electronics 57, 11 (2010), 3585–3595.
[34]
[35]
J.-D. Decotignie. 2009. The many faces of industrial ethernet [2009]. IEEE Industrial Electronics Magazine 3, 1 (2009), 8–19.
[36]
J.-D. Decotignie. 2005. Ethernet-based real-time and industrial communications. Proceedings of the IEEE 93, 6 (2005), 1102–1117.
[37]
P. Danielis, J. Skodzik, V. Altmann, E. B. Schweissguth, F. Golatowski, D. Timmermann, and J. Schacht. 2014. Survey on real-time communication via ethernet in industrial automation environments. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation. IEEE, 2014, 1–8.
[38]
M. Felser. 2005. Real-time ethernet-industry prospective. Proceedings of the IEEE 93, 6, 1118–1129.
[39]
N. Finn. 2018. Introduction to time-sensitive networking. IEEE Communications Standards Magazine 2, 2 (2018), 22–28.
[40]
J. L. Messenger. 2018. Time-sensitive networking: An introduction. IEEE Communications Standards Magazine 2, 2 (2018), 29–33.
[41]
L. L. Bello and W. Steiner. 2019. A perspective on IEEE time-sensitive networking for industrial communication and automation systems. Proceedings of the IEEE 107, 6 (2019), 1094–1120.
[42]
K. B. Stanton. 2018. Distributing deterministic, accurate time for tightly coordinated network and software applications: IEEE 802.1 AS, the TSN profile of PTP. IEEE Communications Standards Magazine 2, 2 (2018), 34–40.
[43]
Z. Zhou, and G. Shou. 2019. An efficient configuration scheme of OPC UA TSN in industrial internet. In Proceedings of the 2019 Chinese Automation Congress. IEEE, 2019, 1548–1551.
[44]
W. Steiner, S. S. Craciunas, and R. S. Oliver. 2018. Traffic planning for time-sensitive communication. IEEE Communications Standards Magazine 2, 2 (2018), 42–47.
[45]
C. Simon, M. Maliosz, and M. Mate. 2018. Design aspects of low-latency services with time-sensitive networking. IEEE Communications Standards Magazine 2, 2 (2018), 48–54.
[46]
P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner. 2018. Enabling fog computing for industrial automation through time-sensitive networking. IEEE Communications Standards Magazine 2, 2 (2018), 55–61.
[47]
PROFIBUS and PROFINET International (PI). 2021. PROFINET over TSN Guideline. Retrieved from https://www.profibus.com/download/profinet-over-tsn.
[48]
CC-Link Partner Association (CLPA). 2018. CC-Link IE TSN. Retrieved from https://www.cc-link.org/en/cclink/cclinkie/cclinkie_tsn.html.
[49]
Dr. Karl Weber, EtherCAT Technology Group. 2018. EtherCAT and TSN - Best Practices for Industrial Ethernet System Architectures (Whitepaper). Retrieved from https://www.ethercat.org/en/downloads/downloads_BB9282D82B0D417E8ED9623D77C5F9A0.htm.
[50]
A. Willig, K. Matheus, and A. Wolisz. 2005. Wireless technology in industrial networks. Proceedings of the IEEE 93, 6 (2005), 1130–1151.
[51]
D. Raposo, A. Rodrigues, S. Sinche, J. Sá Silva, and F. Boavida. 2018. Industrial IoT monitoring: Technologies and architecture proposal. Sensors 18, 10 (2018), 3568.
[52]
I. Tomić and J. A. McCann. 2017. A survey of potential security issues in existing wireless sensor network protocols. IEEE Internet of Things Journal 4, 6 (2017), 1910–1923.
[53]
D. V. Queiroz, M. S. Alencar, R. D. Gomes, I. E. Fonseca, and C. Benavente-Peces. 2017. Survey and systematic mapping of industrial Wireless Sensor Networks. Journal of Network and Computer Applications 97, (2017), 96–125.
[54]
R. E. Mohamed, A. I. Saleh, M. Abdelrazzak, and A. S. Samra. 2018. Survey on wireless sensor network applications and energy efficient routing protocols. Wireless Personal Communications 101, 2 (2018), 1019–1055.
[55]
B. Bhushan and G. Sahoo. 2020. Requirements, protocols, and security challenges in wireless sensor networks: An industrial perspective. In Proceedings of the Handbook of Computer Networks and Cyber Security, Springer, Cham, 2020, 683–713.
[56]
Y. Ren, R. Xie, F. R. Yu, T. Huang, and Y. Liu. 2021. Potential identity resolution systems for the industrial internet of things: A survey. IEEE Communications Surveys & Tutorials 23, 1 (2021), 391–430.
[57]
C. Gomez, J. Oller, and J. Paradells. 2012. Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology. Sensors 12, 9 (2012), 11734–11753.
[58]
K. Cho, W. Park, M. Hong, G. Park, W. Cho, J. Seo, and K. Han. 2015. Analysis of latency performance of Bluetooth low energy (BLE) networks. Sensors 15, 1 (2015), 59–78.
[59]
G. Patti, L. Leonardi, and L. L. Bello. 2016. A bluetooth low energy real-time protocol for industrial wireless mesh networks. In Proceedings of the IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016, 4627–4632.
[60]
L. Leonardi, G. Patti, and L. L. Bello. 2018. Multi-hop real-time communications over bluetooth low energy industrial wireless mesh networks. IEEE Access 6 (2018), 26505–26519.
[61]
P. Kinney. 2003. Zigbee technology: Wireless control that simply works. In Proceedings of the Communications Design Conference 2, (2003), 1–7.
[62]
Wi-Fi Alliance. 2016. Wi-Fi CERTIFIED HaLow. Retrieved from https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-halow.
[63]
V. Baños-Gonzalez, M. S. Afaqui, E. Lopez-Aguilera, and E. Garcia-Villegas. 2016. IEEE 802.11 ah: A technology to face the IoT challenge. Sensors 16, 11 (2016), 1960.
[64]
L. Tian, S. Santi, A. Seferagić, J. Lan, and J. Famaey. 2021. Wi-Fi HaLow for the Internet of Things: An up-to-date survey on IEEE 802.11 ah research. Journal of Network and Computer Applications 182, 2021, 103036.
[65]
I.-G. Lee, D. B. Kim, J. Choi, H. Park, S.-K. Lee, J. Cho, and H. Yu. 2021. WiFi HaLow for long-range and low-power Internet of Things: System on chip development and performance evaluation. IEEE Communications Magazine 59, 7 (2021), 101–107.
[66]
S. Li, L. Da Xu, and S. Zhao. 2018. 5G Internet of Things: A survey. Journal of Industrial Information Integration 10 (2018), 1–9.
[67]
r. G. P. P. (3GPP). 3GPP Releases. Retrieved from https://www.3gpp.org/specifications/67-releases.
[68]
G. A. f. C. I. a. A. (5G-ACIA). White Paper 5G for Industrial Internet of Things (IIoT): Capabilities, Features, and Potential. Retrieved from https://5g-acia.org/whitepapers/5g-for-industrial-internet-of-things/.
[69]
J. Wan, J. Yang, S. Wang, D. Li, P. Li, and M. Xia. 2020. Cross-network fusion and scheduling for heterogeneous networks in smart factory. IEEE Transactions on Industrial Informatics 16, 9 (2020), 6059–6068.
[70]
J. Wan, B. Chen, M. Imran, F. Tao, D. Li, C. Liu, and S. Ahmad. 2018. Toward dynamic resources management for IoT-based manufacturing. IEEE Communications Magazine 56, 2 (2018), 52–59.
[71]
X. Huang, T. Yuan, and M. Ma. 2018. Utility-optimized flow-level bandwidth allocation in hybrid SDNs. IEEE Access 6 (2018), 20279–20290.
[72]
Y. Nakahodo, T. Naito, and E. Oki. 2014. Implementation of smart-OSPF in hybrid software-defined network. In Proceedings of the 2014 4th IEEE International Conference on Network Infrastructure and Digital Content. IEEE, 2014, 374–378.
[73]
Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu. 2017. Traffic engineering in hybrid SDN networks with multiple traffic matrices. Computer Networks 126, (2017), 187–199.
[74]
W. Sun, Z. Wang, and G. Zhang. 2021. A QoS-guaranteed intelligent routing mechanism in software-defined networks. Computer Networks 185, (2021), 107709.
[75]
Y.-R. Chen, A. Rezapour, W.-G. Tzeng, and S.-C. Tsai. 2020. RL-routing: An SDN routing algorithm based on deep reinforcement learning. IEEE Transactions on Network Science and Engineering 7, 4 (2020), 3185–3199.
[76]
W. Fang, C. Zhu, R. Yu, K. Wang, and W. Zhang. 2022. Towards energy-efficient and secure data transmission in ai-enabled software defined industrial networks. IEEE Transactions on Industrial Informatics 18, 6 (2022), 4265–4274.
[77]
M. Singh, G. S. Aujla, A. Singh, N. Kumar, and S. Garg. 2021. Deep-learning-based blockchain framework for secure software-defined industrial networks. IEEE Transactions on Industrial Informatics 17, 1 (2021), 606–616.
[78]
G. S. Aujla, A. Singh, and N. Kumar. 2020. Adaptflow: Adaptive flow forwarding scheme for software-defined industrial networks. IEEE Internet of Things Journal 7, 7 (2020), 5843–5851.
[79]
F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider. 2017. NFV and SDN—Key technology enablers for 5G networks. IEEE Journal on Selected Areas in Communications 35, 11 (2017), 2468–2478.
[80]
J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca, and J. Folgueira. 2017. Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges. IEEE Communications Magazine 55, 5 (2017), 80–87.
[81]
S. Zhang. 2019. An overview of network slicing for 5G. IEEE Wireless Communications 26, 3 (2019), 111–117.
[82]
L. Ji, S. He, W. Wu, C. Gu, J. Bi, and Z. Shi. 2022. Dynamic network slicing orchestration for remote adaptation and configuration in industrial IoT. IEEE Transactions on Industrial Informatics 18, 6 (2022), 4297–4307.
[83]
F. Ansah, M. Majumder, H. de Meer, and J. Jasperneite. 2019. Network slicing: An industry perspective. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation. IEEE, 2019, 1367–1370.
[84]
H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. Leung. 2017. Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine 55, 8 (2017), 138–145.
[85]
J. S. Walia, H. Hämmäinen, K. Kilkki, and S. Yrjölä. 2019. 5G network slicing strategies for a smart factory. Computers in Industry 111 (2019), 108–120.
[86]
M. Gidlund, T. Lennvall, and J. Åkerberg. 2017. Will 5G become yet another wireless technology for industrial automation? In Proceedings of the 2017 IEEE International Conference on Industrial Technology. IEEE, 2017, 1319–1324.
[87]
M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi. 2020. Toward 6G networks: Use cases and technologies. IEEE Communications Magazine 58, 3 (2020), 55–61.
[88]
Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis, and P. Fan. 2019. 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Vehicular Technology Magazine 14, 3 (2019), 28–41.
[89]
T. Huang, W. Yang, J. Wu, J. Ma, X. Zhang, and D. Zhang. 2019. A survey on green 6G network: Architecture and technologies. IEEE Access 7 (2019), 175758–175768.
[90]
P. Yang, Y. Xiao, M. Xiao, and S. Li. 2019. 6G wireless communications: Vision and potential techniques. IEEE Network 33, 4 (2019), 70–75.
[91]
W. Saad, M. Bennis, and M. Chen. 2020. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network 34, 3 (2020), 134–142.
[92]
5G Infrastructure Public Private Partnership (5G PPP). 2020. Hexa-X: A flagship for B5G/6G vision and intelligent fabric of technology enablers connecting human, physical, and digital worlds. Retrieved from https://5g-ppp.eu/hexa-x/.
[93]
S. Rinaldi, P. Ferrari, A. Flammini, M. Rizzi, E. Sisinni, and A. Vezzoli. 2015. Performance analysis of power line communication in industrial power distribution network. Computer Standards & Interfaces 42 (2015), 9–16.
[94]
M. Yigit, V. C. Gungor, G. Tuna, M. Rangoussi, and E. Fadel. 2014. Power line communication technologies for smart grid applications: A review of advances and challenges. Computer Networks 70 (2014), 366–383.
[95]
A. Verl, S. Schmitz, D. Yang, and K.-H. Wurst. 2010. Industrial powerline communication for machine tools and robotics. Production Engineering 4, 2 (2010), 295–305.
[96]
S. W. Lai and G. G. Messier. 2012. Using the wireless and PLC channels for diversity. IEEE Transactions on Communications 60, 12 (2012), 3865–3875.
[97]
M. Gotz, M. Rapp, and K. Dostert. 2004. Power line channel characteristics and their effect on communication system design. IEEE Communications Magazine 42, 4 (2004), 78–86.
[98]
M. Zimmermann and K. Dostert. 2002. A multipath model for the powerline channel. IEEE Transactions on Communications 50, 4 (2002), 553–559.
[99]
N. Pavlidou, A. H. Vinck, J. Yazdani, and B. Honary. 2003. Power line communications: State of the art and future trends. IEEE Communications Magazine 41, 4 (2003), 34–40.
[100]
S. C. Pereira, A. S. Caporali, and I. R. Casella. 2015. Power line communication technology in industrial networks. In Proceedings of the 2015 IEEE International Symposium on Power Line Communications and Its Applications. IEEE, 2015, 216–221.
[101]
Y. Long, Y. Chen, X. Zhang, D. Xiao, Z. Li, and X. Tang. 2021. Research on dual-mode communication technology based on power line carrier and micro power wireless. In Journal of Physics: Conference Series, IOP Publishing 2025, 1 (2021), 012104.
[102]
G. Intelligence. New GSMA Study: Operators Must Look Beyond Connectivity to Increase Share of $1.1 Trillion IoT Revenue Opportunity, Retrieved from https://www.gsma.com/newsroom/press-release/new-gsma-study-operators-must-look-beyond-connectivity-to-increase-share/.
[103]
G. Cena, A. Valenzano, and S. Vitturi. 2008. Hybrid wired/wireless networks for real-time communications. IEEE Industrial Electronics Magazine 2, 1 (2008), 8–20.
[104]
Z. Hao, L. Guohuan, W. Honghui, and S. Zhongkui. 2012. Development for protocol conversion gateway of industrial field bus. In Proceedings of the Advanced Technology in Teaching-Proceedings of the 2009 3rd International Conference on Teaching and Computational Science. Springer, Berlin, 2012, 211–216.
[105]
H. Zhang, Y. Li, and H. Zhu. 2011. Development for protocol conversion gateway of PROFIBUS and Modbus. Procedia Engineering 15 (2011), 767–771.
[106]
L. Guohuan, C. Haiting, and L. Shujie. 2010. Research and implementation of ARM-based fieldbus protocol conversion method. In Proceedings of the 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering. IEEE. 260–262.
[107]
J. Liu, Y. Fang, and D. Zhang. 2007. PROFIBUS-DP and HART protocol conversion and the gateway development. In Proceedings of the 2007 2nd IEEE Conference on Industrial Electronics and Applications. IEEE, 2007, 15–20.
[108]
H. Chen. 2016. Heterogeneous network integration based on protocol conversion. In Proceedings of the 2016 35th Chinese Control Conference. IEEE, 2016, 6888–6893.
[109]
Y. Zhou, W. Xiao, M. Liu, and X. Li. 2017. Design of the embedded gateway for 4G and PROFIBUS-DP based on FPGA. In Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications. IEEE, 2017, 748–752.
[110]
N. C. Iglesias, P. Bulacio, and E. Tapia. 2020. Internet of agricultural machinery: Integration of heterogeneous networks. In Proceedings of the 2020 IEEE International Conference on Industrial Technology. IEEE, 2020, 785–790.
[111]
C.-H. Chen, M.-Y. Lin, and C.-C. Liu. 2018. Edge computing gateway of the industrial internet of things using multiple collaborative microcontrollers. IEEE Network 32, 1 (2018), 24–32.
[112]
L. Shimei, Z. Jianhong, L. Enfeng, and H. Gang. 2020. Design of industrial Internet of Things gateway with multi-source data processing. In Proceedings of the 2020 International Conference on Computer Engineering and Application. IEEE, 2020, 232–236.
[113]
P. Hu. 2015. A system architecture for software-defined industrial Internet of Things. In Proceedings of the 2015 IEEE International Conference on Ubiquitous Wireless Broadband. IEEE, 2015, 1–5.
[114]
K. Ahmed, J. O. Blech, M. A. Gregory, and H. W. Schmidt. 2018. Software defined networks in industrial automation. Journal of Sensor and Actuator Networks 7, 3 (2018), 33.
[115]
X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen. 2020. Convergence of edge computing and deep learning: A comprehensive survey. IEEE Communications Surveys & Tutorials 22, 2 (2020), 869–904.
[116]
S. Grüner, J. Pfrommer, and F. Palm. 2016. RESTful industrial communication with OPC UA. IEEE Transactions on Industrial Informatics 12, 5 (2016), 1832–1841.
[117]
C. Eymüller, J. Hanke, A. Hoffmann, W. Reif, M. Kugelmann, and F. Grätz. 2021. RealCaPP: Real-time capable Plug & Produce communication platform with OPC UA over TSN for distributed industrial robot control. In Proceedings of the 2021 IEEE 17th International Conference on Automation Science and Engineering. IEEE, 2021, 585–590.
[118]
C. Eymüller, J. Hanke, A. Hoffmann, M. Kugelmann, and W. Reif. 2020. Real-time capable OPC-UA Programs over TSN for distributed industrial control. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation. IEEE. 278–285.
[119]
J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran. 2018. Open source OPC UA PubSub over TSN for realtime industrial communication. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation. IEEE. 1087–1090.
[120]
A. Gogolev, R. Braun, and P. Bauer. 2019. TSN Traffic shaping for OPC UA field devices. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics. IEEE, 951–956.
[121]
J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, and A. V. Vasilakos. 2016. Software-defined industrial internet of things in the context of industry 4.0. IEEE Sensors Journal 16, 20 (2016), 7373–7380.
[122]
W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge computing: Vision and challenges. IEEE Internet of Things Journal 3, 5 (2016), 637–646.
[123]
J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu. 2018. Fog computing for energy-aware load balancing and scheduling in smart factory. IEEE Transactions on Industrial Informatics 14, 10 (2018), 4548–4556.
[124]
J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li. 2019. A survey on end-edge-cloud orchestrated network computing paradigms: Transparent computing, mobile edge computing, fog computing, and cloudlet. ACM Computing Surveys 52, 6 (2019), 1–36, DOI:
[125]
P. Hu, W. Chen, C. He, Y. Li, and H. Ning. 2020. Software-defined edge computing (SDEC): Principle, open IoT system architecture, applications, and challenges. IEEE Internet of Things Journal 7, 7 (2020), 5934–5945.
[126]
X. Li, D. Li, J. Wan, C. Liu, and M. Imran. 2018. Adaptive transmission optimization in SDN-based industrial Internet of Things with edge computing. IEEE Internet of Things Journal 5, 3 (2018), 1351–1360.
[127]
K. Magzhan and H. M. Jani. 2013. A review and evaluations of shortest path algorithms. International Journal of Scientific & Technology Research 2, 6 (2013), 99–104.
[128]
S. W. AbuSalim, R. Ibrahim, M. Z. Saringat, S. Jamel, and J. A. Wahab. 2020. Comparative analysis between dijkstra and bellman-ford algorithms in shortest path optimization. In Proceedings of the IOP Conference Series: Materials Science and Engineering, IOP Publishing. 012077.
[129]
Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. 2017. A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys & Tutorials 19, 4 (2017), 2322–2358.
[130]
D. Lahat, T. Adali, and C. Jutten. 2015. Multimodal data fusion: An overview of methods, challenges, and prospects. Proceedings of the IEEE 103, 9 (2015), 1449–1477.
[131]
W. Shi and S. Dustdar. 2016. The promise of edge computing. Computer 49, 5 (2016), 78–81.
[132]
F. Y. Okay and S. Ozdemir. 2018. Routing in fog-enabled IoT platforms: A survey and an SDN-based solution. IEEE Internet of Things Journal 5, 6 (2018), 4871–4889.
[133]
F. Xiao, Z. Zhang, and J. Abawajy. 2019. Workflow scheduling in distributed systems under fuzzy environment. Journal of Intelligent & Fuzzy Systems 37, 4 (2019), 5323–5333.
[134]
P. Singh and G. Dhiman. 2018. Uncertainty representation using fuzzy-entropy approach: Special application in remotely sensed high-resolution satellite images. Applied Soft Computing 72 (2018), 121–139.
[135]
Y.-D. Huang, Y.-C. Liang, and G. Yang. 2016. A fuzzy support vector machine algorithm for cooperative spectrum sensing with noise uncertainty. In Proceedings of the 2016 IEEE Global Communications Conference. IEEE, 2016, 1–6.
[136]
M. M. Alyannezhadi, A. A. Pouyan, and V. Abolghasemi. 2017. An efficient algorithm for multisensory data fusion under uncertainty condition. Journal of Electrical Systems and Information Technology 4, 1 (2017), 269–278.
[137]
T. Ma and F. Xiao. 2019. An improved method to transform triangular fuzzy number into basic belief assignment in evidence theory. IEEE Access 7 (2019), 25308–25322.
[138]
H. Rappel, L. A. Beex, L. Noels, and S. Bordas. 2019. Identifying elastoplastic parameters with Bayes’ theorem considering output error, input error and model uncertainty. Probabilistic Engineering Mechanics 55 (2019), 28–41.
[139]
J. Simanek, M. Reinstein, and V. Kubelka. 2015. Evaluation of the EKF-based estimation architectures for data fusion in mobile robots. IEEE/ASME Transactions on Mechatronics 20, 2 (2015), 985–990.
[140]
S. Soltani, M. Kordestani, P. K. Aghaee, and M. Saif. 2018. Improved estimation for well-logging problems based on fusion of four types of kalman filters. IEEE Transactions on Geoscience and Remote Sensing 56, 2 (2018), 647–654.
[141]
X. Gao, F. Liu, L. Pan, Y. Deng, and S. B. Tsai. 2019. Uncertainty measure based on Tsallis entropy in evidence theory. International Journal of Intelligent Systems 34, 11 (2019), 3105–3120.
[142]
A. K. Sikder, G. Petracca, H. Aksu, T. Jaeger, and A. S. Uluagac. 2021. A survey on sensor-based threats and attacks to smart devices and applications. IEEE Communications Surveys & Tutorials 23, 2 (2021), 1125–1159.
[143]
C. Alcaraz and J. Lopez. 2010. A security analysis for wireless sensor mesh networks in highly critical systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 40, 4 (2010), 419–428.
[144]
D. Christin, P. S. Mogre, and M. Hollick. 2010. Survey on wireless sensor network technologies for industrial automation: The security and quality of service perspectives. Future Internet 2, 2 (2010), 96–125.
[145]
W. Wang, H. Xu, M. Alazab, T. R. Gadekallu, Z. Han, and C. Su. 2021. Blockchain-based reliable and efficient certificateless signature for IIoT devices. IEEE Transactions on Industrial Informatics. DOI:
[146]
C. Qiu, F. R. Yu, H. Yao, C. Jiang, F. Xu, and C. Zhao. 2019. Blockchain-based software-defined industrial Internet of Things: A dueling deep Q-learning approach. IEEE Internet of Things Journal 6, 3 (2019), 4627–4639.
[147]
M. Liu, F. R. Yu, Y. Teng, V. C. Leung, and M. Song. 2019. “Performance optimization for blockchain-enabled industrial Internet of Things (IIoT) systems: A deep reinforcement learning approach”. IEEE Transactions on Industrial Informatics 15, 6 (2019), 3559–3570.
[148]
J. Zhou. 2020. Real-time task scheduling and network device security for complex embedded systems based on deep learning networks. Microprocessors and Microsystems 79, (2020), 103282.
[149]
H. Mouratidis and V. Diamantopoulou. 2018. A security analysis method for industrial internet of things. IEEE Transactions on Industrial Informatics 14, 9 (2018), 4093–4100.

Cited By

View all
  • (2025)Anomaly Detection for MEC Enabled Hierarchical Industrial IoT With Transformer Enhanced Variational Auto EncoderIEEE Transactions on Industrial Informatics10.1109/TII.2024.342160021:1(40-48)Online publication date: Jan-2025
  • (2024)The Design and Real-Time Optimization of an EtherCAT Master for Multi-Axis Motion ControlElectronics10.3390/electronics1315310113:15(3101)Online publication date: 5-Aug-2024
  • (2024)GEES: Enabling Location Privacy-Preserving Energy Saving in Multi-Access Edge ComputingProceedings of the ACM Web Conference 202410.1145/3589334.3645329(2735-2746)Online publication date: 13-May-2024
  • Show More Cited By

Index Terms

  1. Heterogeneous Network Access and Fusion in Smart Factory: A Survey

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 55, Issue 6
      June 2023
      781 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/3567471
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 07 December 2022
      Online AM: 29 April 2022
      Accepted: 06 April 2022
      Revised: 12 February 2022
      Received: 20 July 2021
      Published in CSUR Volume 55, Issue 6

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Smart factory
      2. heterogeneous network
      3. network fusion
      4. Software Defined Network
      5. Artificial Intelligence

      Qualifiers

      • Survey
      • Refereed

      Funding Sources

      • Guangdong Province Key Areas R & D Program
      • Natural Science Foundation of Guangdong Province, China

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)532
      • Downloads (Last 6 weeks)55
      Reflects downloads up to 20 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)Anomaly Detection for MEC Enabled Hierarchical Industrial IoT With Transformer Enhanced Variational Auto EncoderIEEE Transactions on Industrial Informatics10.1109/TII.2024.342160021:1(40-48)Online publication date: Jan-2025
      • (2024)The Design and Real-Time Optimization of an EtherCAT Master for Multi-Axis Motion ControlElectronics10.3390/electronics1315310113:15(3101)Online publication date: 5-Aug-2024
      • (2024)GEES: Enabling Location Privacy-Preserving Energy Saving in Multi-Access Edge ComputingProceedings of the ACM Web Conference 202410.1145/3589334.3645329(2735-2746)Online publication date: 13-May-2024
      • (2024)LLM4HIN: Discovering Meta-path with Large Language Model for Reasoning on Complex Heterogeneous Information Networks2024 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics62450.2024.00100(527-534)Online publication date: 19-Aug-2024
      • (2024)Predictive Path Coordination of Collaborative Transportation Multirobot System in a Smart FactoryIEEE Transactions on Systems, Man, and Cybernetics: Systems10.1109/TSMC.2024.343122254:10(6410-6423)Online publication date: Oct-2024
      • (2024)Predicting Channel Delay State Information in 5G-TSN Systems Using Extreme Learning Machine Autoencoder (ELM-AE) Model Based on Intelligent Deep Extreme Learning Machine (DELM)IEEE Internet of Things Journal10.1109/JIOT.2024.342548011:24(39375-39394)Online publication date: 15-Dec-2024
      • (2024)Digital Twin Portrait: A Fusion and Application Method of Multisource Twin Data for Flexible Manufacturing LineIEEE Journal of Emerging and Selected Topics in Industrial Electronics10.1109/JESTIE.2023.33177925:2(753-762)Online publication date: Apr-2024
      • (2024)Rapidly Deployable Satellite-Based Emergency Communications InfrastructureIEEE Access10.1109/ACCESS.2024.346551212(139368-139410)Online publication date: 2024
      • (2024)Fusion of heterogeneous industrial wireless networks: A surveyComputer Networks10.1016/j.comnet.2024.110929(110929)Online publication date: Dec-2024
      • (2024)aBBR: An augmented BBR for collaborative intelligent transmission over heterogeneous networks in IIoTComputer Communications10.1016/j.comcom.2024.107932(107932)Online publication date: Aug-2024
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      Full Text

      HTML Format

      View this article in HTML Format.

      HTML Format

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media