skip to main content
10.1145/3531437.3539726acmconferencesArticle/Chapter ViewAbstractPublication PagesislpedConference Proceedingsconference-collections
research-article
Public Access

A Unified Forward Error Correction Accelerator for Multi-Mode Turbo, LDPC, and Polar Decoding

Published: 01 August 2022 Publication History

Abstract

Forward error correction (FEC) is a critical component in communication systems as the errors induced by noisy channels can be corrected using the redundancy in the coded message. This paper introduces a novel multi-mode FEC decoder accelerator that can decode Turbo, LDPC, and Polar codes using a unified architecture. The proposed design explores the similarities in these codes to enable energy efficient decoding with minimal overhead in the total area of the unified architecture. Moreover, the proposed design is highly reconfigurable to support various existing and future FEC standards including 3GPP LTE/5G, and IEEE 802.11n WiFi. Implemented in GF 12nm FinFET technology, the design occupies 8.47mm2 of chip area attaining 25% logic and 49% memory area savings compared to a collection of single-mode designs. Running at 250MHz and 0.8V, the decoder achieves per-iteration throughput and energy efficiency of 690Mb/s and 44pJ/b for Turbo; 740Mb/s and 27.4pJ/b for LDPC; and 950Mb/s and 45.8pJ/b for Polar.

References

[1]
[1] Y. Hawwar et al., ”3G UMTS wireless system physical layer: baseband processing hardware implementation perspective,” IEEE Comm. Mag., vol. 44, no. 9, pp. 52-58, Sept. 2006.
[2]
[2] Z. Shen, A. Papasakellariou, J. Montojo, D. Gerstenberger and F. Xu, ”Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications,” IEEE Comm. Mag., Feb. 2012.
[3]
[3] J. P. Woodard and L. Hanzo, ”Comparative study of turbo decoding techniques: an overview,” IEEE Trans. Veh. Tech., Nov. 2000.
[4]
[4] C. B. Shung, P. H. Siegel, G. Ungerboeck and H. K. Thapar, ”VLSI architectures for metric normalization in the Viterbi algorithm,” IEEE ICC, 1990, pp. 1723-1728 vol.4.
[5]
[5] IEEE P802.11 Wireless LANs WWiSE Proposal: High Throughout Extension to the 802.11 Standard, IEEE 11-04-0886-00-000n, 2005.
[6]
[6] 3GPP TS 38.212 version 15.2.0 Release 15 : 5G; NR; Multiplexing and channel coding, ETSI, 2017.
[7]
[7] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja and D. J. Costello, ”LDPC block and convolutional codes based on circulant matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 2966-2984, Dec. 2004.
[8]
[8] A. Anastasopoulos, ”A comparison between the sum-product and the min-sum iterative detection algorithms based on density evolution,” GLOBECOM, 2001, pp. 1021-1025 vol. 2.
[9]
[9] K. Niu, K. Chen, J. Lin and Q. T. Zhang, ”Polar codes: Primary concepts and practical decoding algorithms,” IEEE Comm. Mag., July 2014.
[10]
[10] S. Sun and Z. Zhang, ”Architecture and optimization of high-throughput belief propagation decoding of polar codes,” ISCAS, 2016, pp. 165-168.
[11]
[11] A. Amaricai, D. Stein and O. Boncalo, ”Generalized Very High Throughput Unrolled LDPC Layered Decoder,” TELFOR, 2020, pp. 1-4.
[12]
[12] J. Li, G. He, H. Hou, Z. Zhang and J. Ma, ”Memory efficient layered decoder design with early termination for LDPC codes,” ISCAS, 2011.
[13]
[13] T. T. Bao Nguyen and H. Lee, ”Efficient Four-way Row-splitting Layered QC-LDPC Decoder Architecture,” ISOCC, 2018, pp. 210-211.
[14]
[14] S. Kim, G. E. Sobelman and H. Lee, ”A Reduced-Complexity Architecture for LDPC Layered Decoding Schemes,” IEEE TVLSI, vol. 19, no. 6, pp. 1099-1103, June 2011.
[15]
[15] Z. Wu and D. Liu, ”Memory sharing techniques for multi-standard high-throughput FEC decoder,” SAMOS, 2014, pp. 93-98.
[16]
[16] M. Y. Zinchenko, A. M. Levadniy and Y. A. Grebenko, ”LDPC Decoder Power Consumption Optimization,” IEEE REEPE, 2020, pp. 1-5.
[17]
[17] F. Maessen et al., ”Memory power reduction for the highspeed implementation of turbo codes,” IEEE SiPS, 2001, pp. 16-24.
[18]
[18] A. Niktash, H. T. Parizi, A. H. Kamalizad and N. Bagherzadeh, ”RECFEC: A Reconfigurable FEC Processor for Viterbi, Turbo, Reed-Solomon and LDPC Coding,” IEEE WCNC, 2008, pp. 605-610.
[19]
[19] G. Gentile, M. Rovini and L. Fanucci, ”A multi-standard flexible turbo/LDPC decoder via ASIC design,” ISTC, 2010, pp. 294-298.
[20]
[20] F. Naessens et al., ”A 10.37 mm2 675 mW reconfigurable LDPC and Turbo encoder and decoder for 802.11n, 802.16e and 3GPP-LTE,” IEEE VLSIC, 2010, pp. 213-214.
[21]
[21] C. -Y. Lin, C. -C. Wong and H. -C. Chang, ”An Area Efficient Radix-4 Reciprocal Dual Trellis Architecture for a High-Code-Rate Turbo Decoder,” IEEE TCAS-II, vol. 62, no. 1, pp. 65-69, Jan. 2015.
[22]
[22] C. -H. Lin, C. -Y. Chen and A. -Y. Wu, ”Area-Efficient Scalable MAP Processor Design for High-Throughput Multistandard Convolutional Turbo Decoding,” IEEE TVLSI, vol. 19, no. 2, pp. 305-318, Feb. 2011.
[23]
[23] I. Tsatsaragkos and V. Paliouras, ”A Reconfigurable LDPC Decoder Optimized for 802.11n/ac Applications,” IEEE TVLSI, Jan. 2018.
[24]
[24] O. Dizdar and E. Arıkan, ”A High-Throughput Energy-Efficient Implementation of Successive Cancellation Decoder for Polar Codes Using Combinational Logic,” IEEE TCAS-I, vol. 63, no. 3, March 2016.
[25]
[25] Youn Sung Park, Yaoyu Tao, Shuanghong Sun and Zhengya Zhang, ”A 4.68Gb/s belief propagation polar decoder with bit-splitting register file,” IEEE VLSIC, 2014, pp. 1-2.
[26]
[26] Ling Cong, Cui Long and Wu Xiaofu, ”Further results on the equivalence between SOVA and max-log-MAP decodings,” ICCT 2000.

Cited By

View all
  • (2024)Belief Propagation Decoding for Short-Length Codes Based on Sparse Tanner GraphIEEE Communications Letters10.1109/LCOMM.2024.336629328:5(969-973)Online publication date: May-2024
  • (2023)Improved Belief Propagation Decoding of Turbo CodesICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)10.1109/ICASSP49357.2023.10097058(1-5)Online publication date: 4-Jun-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ISLPED '22: Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design
August 2022
192 pages
ISBN:9781450393546
DOI:10.1145/3531437
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 August 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. FEC decoder
  2. LDPC
  3. Polar code
  4. Turbo code

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • DARPA

Conference

ISLPED '22
Sponsor:

Acceptance Rates

Overall Acceptance Rate 398 of 1,159 submissions, 34%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)274
  • Downloads (Last 6 weeks)27
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Belief Propagation Decoding for Short-Length Codes Based on Sparse Tanner GraphIEEE Communications Letters10.1109/LCOMM.2024.336629328:5(969-973)Online publication date: May-2024
  • (2023)Improved Belief Propagation Decoding of Turbo CodesICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)10.1109/ICASSP49357.2023.10097058(1-5)Online publication date: 4-Jun-2023

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media