skip to main content
10.1145/3532105.3535019acmconferencesArticle/Chapter ViewAbstractPublication PagessacmatConference Proceedingsconference-collections
research-article

BlueSky: Physical Access Control: Characteristics, Challenges, and Research Opportunities

Published:08 June 2022Publication History

ABSTRACT

Physical access control (PAC) is an integral part of the physical security system of any organization. However, despite the size of the PAC industry and its importance in securing our physical environments, public research and development regarding PAC are limited. This paper aims to lower the barriers for the access control research community to explore and engage in the research opportunities regarding PAC systems. We characterize PAC systems and present an access control architecture that captures their central concepts, such as physical space models and different levels of policies, and processes such as policy conversion, enforcement, and analysis. We discuss how PAC can be distinguished from logical access control (LAC), which is applicable to cyber environments. We also present several unique challenges and research opportunities that the PAC domain introduces.

Skip Supplemental Material Section

Supplemental Material

sacmat22-sacmat20bs.mp4

mp4

209.1 MB

References

  1. C. Ardagna, M. Cremonini, S. De Capitani di Vimercati, and P. Samarati. Access Control in Location-Based Services. In Privacy in Location-Based Applications, pages 106--126. 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Ben Fadhel, D. Bianculli, L. Briand, and B. Hourte. A Model-driven Approach to Representing and Checking RBAC Contextual Policies. In Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, CODASPY '16, pages 243--253, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A temporal role-based access control model. ACM Trans. Inf. Syst. Secur., 4(3):191--233, 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Bhatti, E. Bertino, and A. Ghafoor. A Trust-Based Context-Aware Access Control Model for Web-Services. Distributed and Parallel Databases, 18(1):83--105, 2005.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Y. Cao, Z. Huang, Y. Yu, C. Ke, and Z. Wang. A topology and risk-aware access control framework for cyber-physical space. Frontiers of Computer Science, 14(4):144805, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y. Cao, Y. Ping, S. Tao, Y. Chen, and Y. Zhu. Specification and adaptive verification of access control policy for cyber-physical-social spaces. Computers & Security, 114:102579, 2022.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. L. Cardelli and A. D. Gordon. Types for mobile ambients. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '99, pages 79--92, 1999.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. M. Chandran and J. B. D. Joshi. LoT-RBAC: A Location and Time-Based RBAC Model. In A. H. H. Ngu, M. Kitsuregawa, E. J. Neuhold, J.- Y. Chung, and Q. Z. Sheng, editors, Web Information Systems Engineering -- WISE 2005, LNCS, pages 361--375, 2005.Google ScholarGoogle Scholar
  9. R. B. CHS-III PSP. Fixing the gaps in your PACS. Security Info Watch. 2017. url: https://www.securityinfowatch.com/access-identity/article/12293604/fixing-the-gaps-in-your-pacs.Google ScholarGoogle Scholar
  10. M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca. GEO-RBAC: A spatially aware RBAC. ACM Trans. Inf. Syst. Secur., 10(1), 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Datta, S. Jha, N. Li, D. Melski, and T. Reps. Analysis Techniques for Information Security. Synthesis Lectures on Information Security, Privacy, and Trust, 2(1):1--164, 2010.Google ScholarGoogle Scholar
  12. eXtensible Access Control Markup Language (XACML) Version 3.0 Plus Errata 01, OASIS, 2017. url: http://docs.oasis-open.org/xacml/3.0/errata01/os/xacml-3.0-core-spec-errata01-os-complete.pdf.Google ScholarGoogle Scholar
  13. W. M. Fitzgerald, F. Turkmen, S. N. Foley, and B. O'Sullivan. Anomaly analysis for Physical Access Control security configuration. In 7th International Conference on Risks and Security of Internet and Systems (CRiSIS), pages 1--8, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Flight Systems Stolen From Arik Air Boeing 737. Simple Flying. 2022. url: https://simpleflying.com/arik-air-737-system-theft/.Google ScholarGoogle Scholar
  15. R. Frohardt, B. E. Chang, and S. Sankaranarayanan. Access Nets: Modeling Access to Physical Spaces. In VMCAI, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Ge and S. L. Osborn. A design for parameterized roles. In C. Farkas and P. Samarati, editors. IFIP TC11/WG11.3 Eighteenth Annual Conference on Data and Applications Security, pages 251--264, 2004.Google ScholarGoogle Scholar
  17. Glossary of Key Information Security Terms. Glossary NISTIR 7298 Rev. 3, NIST. url: https://csrc.nist.gov/glossary/term/lacs.Google ScholarGoogle Scholar
  18. V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scarfone. Guide to Attribute Based Access Control (ABAC) Definition and Considerations. NIST SP 800--162, National Institute of Standards and Technology, 2014. url: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800--162.pdf.Google ScholarGoogle Scholar
  19. A. A. Jabal, M. Davari, E. Bertino, C. Makaya, S. Calo, D. Verma, A. Russo, and C. Williams. Methods and Tools for Policy Analysis. ACM Computing Surveys, 51(6):121:1--121:35, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo. EXAM: a comprehensive environment for the analysis of access control policies. Intl. Journal of Information Security, 9(4):253--273, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. R. Milner. The Space and Motion of Communicating Agents. 2009. 215 pages.Google ScholarGoogle Scholar
  22. J. Newman and K. Griffith. Facebook's WFH policy made 7-hour outage worse. Daily Mail. 2021. url: https://www.dailymail.co.uk/news/article-10060447/WFH-Facebooks-outage-worse-75--60-000-workforce-not-office-fix-it.html.Google ScholarGoogle Scholar
  23. ONVIF Access Rules Service Specification, ONVIF: Open Network Video Interface Forum Inc., 2019. url: http://www.onvif.org/specs/srv/access/ONVIF-AccessRules-Service-Spec.pdf.Google ScholarGoogle Scholar
  24. OSS Standard Offline (OSS-SO). OSS-Association. url: https://www.oss-association.com/en/oss-association/oss-standards/oss-standard-offline-application/.Google ScholarGoogle Scholar
  25. L. Pasquale, C. Ghezzi, E. Pasi, C. Tsigkanos, M. Boubekeur, B. Florentino-Liano, T. Hadzic, and B. Nuseibeh. Topology-Aware Access Control of Smart Spaces. Computer, 50(7):54--63, 2017.Google ScholarGoogle Scholar
  26. J. Saltzer and M. Schroeder. The protection of information in computer systems. Proceedings of the IEEE, 63(9):1278--1308, 1975.Google ScholarGoogle ScholarCross RefCross Ref
  27. R. S. Sandhu, E. J. E. Coyne, H. L. Feinstein, and C. E. C. Youman. Role-based access control models. Computer, 29(2):38--47, 1996.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Schneier. Essays: Is Perfect Access Control Possible? - Schneier on Security. url: https://www.schneier.com/essays/archives/2009/09/is_perfect_access_co.html.Google ScholarGoogle Scholar
  29. D. Servos and S. L. Osborn. Current Research and Open Problems in Attribute-Based Access Control. ACM Comput. Surv., 49(4):65:1--65:45, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. N. Skandhakumar, F. Salim, J. Reid, and E. Dawson. Physical Access Control Administration Using Building Information Models. In Cyberspace Safety and Security, volume 7672, pages 236--250, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. L. Tandon, P. W. L. Fong, and R. Safavi-Naini. HCAP: A History-Based Capability System for IoT Devices. In Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies, SACMAT '18, pages 247--258, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. The Physical Security Business 2021 to 2026 - Access Control, Video Surveillance & Intruder Alarm / Perimeter Protection Research, Meemoori Research AB, 2021-Q4.Google ScholarGoogle Scholar
  33. P. Tsankov, M. Dashti, and D. Basin. Access Control Synthesis for Physical Spaces. 29th IEEE Computer Security Foundations Symposium (CSF), 2016.Google ScholarGoogle Scholar
  34. C. Tsigkanos, L. Pasquale, C. Ghezzi, and B. Nuseibeh. Ariadne: Topology Aware Adaptive Security for Cyber-Physical Systems. 37th IEEE International Conference on Software Engineering, 2015.Google ScholarGoogle Scholar
  35. C. Tsigkanos, L. Pasquale, C. Menghi, C. Ghezzi, and B. Nuseibeh. Engineering topology aware adaptive security: Preventing requirements violations at runtime. In 22nd IEEE International Requirements Engineering Conference (RE), pages 203--212, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  36. F. Turkmen, S. Foley, B. O'Sullivan, W. Fitzgerald, T. Hadzic, S. Basagiannis, and M. Boubekeur. Explanations and Relaxations for Policy Conflicts in Physical Access Control. In Proc. 25th IEEE International Conference on Tools with Artificial Intelligence, ICTAI '13, pages 330--336, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. D. Unal and M. U. Caglayan. A formal role-based access control model for security policies in multi-domain mobile networks. Computer Networks, 57(1):330--350, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. van der Laan. Incremental Verification of Physical Access Control Systems, University of Twente, 2021. url: http://essay.utwente.nl/85634/3/Laan_MA_EEMCS.pdf.Google ScholarGoogle Scholar

Index Terms

  1. BlueSky: Physical Access Control: Characteristics, Challenges, and Research Opportunities

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SACMAT '22: Proceedings of the 27th ACM on Symposium on Access Control Models and Technologies
        June 2022
        282 pages
        ISBN:9781450393577
        DOI:10.1145/3532105

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 June 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate177of597submissions,30%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader