skip to main content
10.1145/3532721.3535570acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
abstract

Dual Robot Avatar: Real-time Multispace Experience using Telepresence Robots and Walk Sensation Feedback including Viewpoint Sharing for Immersive Virtual Tours

Published:25 July 2022Publication History

ABSTRACT

Traveling to different places simultaneously is a dream for several people, but it is difficult to realize this aspiration because of our physical space limits. On one hand, virtual reality technologies can help alleviate such limits. According to the best of the authors’ knowledge, there is no study attempt to operate multiple telepresence robots in remote places simultaneously, with presenting walk sensation feedback to the operator for an immersive multispace experience. In this study, we used autonomous mobile robots; a dog and wheel type one, where their movements’ direction can be controlled by an operator (Fig. 1). The operator can alternatively choose/re-choose the space (or robot) to attend and can move the viewpoint using a head-mounted display (HMD) controller. A live video image with 4 K resolution is transmitted to the HMD via web real-time communication (WebRTC) network from a 360° camera placed to the top of each robot. The operator perceives viewpoint movement feedback as a visual cue and vestibular feeling via waist motion and proprioception on the legs. Our system also allows viewpoint sharing in which fifty users can enjoy omnidirectional viewing of the remote environments through the HMD without walk-like sensation feedback.

References

  1. Lucas Bruck, Bruce Haycock, and Ali Emadi. 2021. A Review of Driving Simulation Technology and Applications. IEEE Open Journal of Vehicular Technology 2 (2021), 1–16. https://doi.org/10.1109/OJVT.2020.3036582Google ScholarGoogle ScholarCross RefCross Ref
  2. Markku Suomalainen, Basak Sakcak, Adhi Widagdo, Juho Kalliokoski, Katherine J. Mimnaugh, Alexis P. Chambers, Timo Ojala, and Steven M. LaValle. 2022. Unwinding Rotations Improves User Comfort with Immersive Telepresence Robots. CoRR abs/2201.02392(2022). arXiv:2201.02392https://arxiv.org/abs/2201.02392Google ScholarGoogle Scholar
  3. Susumu Tachi. 2016. Telexistence: Enabling Humans to Be Virtually Ubiquitous. IEEE Computer Graphics and Applications 36, 1 (2016), 8–14. https://doi.org/10.1109/MCG.2016.6Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Minori Unno, Ken Yamaoka, Vibol Yem, Tomohiro Amemiya, Michiteru Kitazaki, and Yasushi Ikei. 2021. Novel Motion Display for Virtual Walking. 482–492. https://doi.org/10.1007/978-3-030-78361-7_37Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Vibol Yem, Reon Nashiki, Tsubasa Morita, Fumiya Miyashita, Tomohiro Amemiya, and Yasushi Ikei. 2019. TwinCam Go: Proposal of Vehicle-Ride Sensation Sharing with Stereoscopic 3D Visual Perception and Vibro-Vestibular Feedback for Immersive Remote Collaboration. In SIGGRAPH Asia 2019 Emerging Technologies (Brisbane, QLD, Australia) (SA ’19). Association for Computing Machinery, New York, NY, USA, 53–54. https://doi.org/10.1145/3355049.3360540Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGGRAPH '22: ACM SIGGRAPH 2022 Emerging Technologies
    July 2022
    23 pages
    ISBN:9781450393638
    DOI:10.1145/3532721

    Copyright © 2022 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 25 July 2022

    Check for updates

    Qualifiers

    • abstract
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate1,822of8,601submissions,21%

    Upcoming Conference

    SIGGRAPH '24

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format