skip to main content
research-article

LSAB: Enhancing Spatio-temporal Efficiency of AoA Tracking Systems

Published:29 November 2022Publication History
Skip Abstract Section

Abstract

Estimating the angle-of-arrival (AoA) of an RF source by using a large-sized antenna array is a classical topic in wireless systems. However, AoA tracking systems are not yet used for Internet of Things (IoT) in the real world due to their unaffordable cost. Many efforts, such as a time-sharing array, emulated array, and sparse array, were recently made to cut the cost. This work introduces a log-spiral antenna belt (LSAB), a new novel sparse “planar array” that could estimate the AoA of an IoT device in 3D space by using a few antennas connected to a single timeshare channel. Unlike the conventional arrays, LSAB deploys antennas on a log-spiral-shaped belt in a non-linear manner, following the theory of minimum resolution redundancy newly discovered in this work. One physical 8 × 8 uniform planar array (UPA) and four logical sparse arrays, including LSAB, were prototyped to validate the theory and evaluate the performance of sparse arrays. The extensive benchmark demonstrates that the performance of LSAB was comparable to that of a UPA, with similar degree of resolution; and LSAB could provide over 40% performance improvement than existing sparse arrays. We also prototyped a second LSAB adapted to an RFID system for localizing RFID tags at centimeter-level accuracy.

REFERENCES

  1. [1] Wikipedia. 2020. Log-spectral distance. Retrieved from https://en.m.wikipedia.org/wiki/Log-spectral_distance.Google ScholarGoogle Scholar
  2. [2] Mike Lenehan. 2021. Impinj Antenna Hubs Documentation. Retrieved from https://support.impinj.com/hc/en-us/articles/202755698-Speedway-Antenna-Hub-Product-Brief-Datasheet.Google ScholarGoogle Scholar
  3. [3] Mike Lenehan. 2022. Monza R6-P Product Brief/Datasheet. Retrieved from https://support.impinj.com/hc/en-us/articles/204793258-Monza-R6-P-Product-Brief-Datasheet.Google ScholarGoogle Scholar
  4. [4] NaturalPoint, Inc., 2022. OptiTrack. Retrieved from https://optitrack.com/.Google ScholarGoogle Scholar
  5. [5] Infineon Technologies AG. 2022. RF Switch. Retrieved from https://www.infineon.com/cms/cn/product/rf-wireless-control/rf-switches-spxt-dpxt/bgs18ga14/.Google ScholarGoogle Scholar
  6. [6] NATIONAL INSTRUMENTS CORP. 2022. USRP 2950. http://www.ni.com/en-us/support/model.usrp-2950.html.Google ScholarGoogle Scholar
  7. [7] Digi International Inc. 2022. Zigbee node. Retrieved from https://www.digi.com/products/embedded-systems/rf-modules/sub-1-ghz-modules/xbee-pro-900hp.Google ScholarGoogle Scholar
  8. [8] Adib Fadel, Kabelac Zachary, and Katabi Dina. 2015. Multi-person localization via RF body reflections. In Proceedings of the USENIX NSDI. 279292.Google ScholarGoogle Scholar
  9. [9] Adib Fadel, Kabelac Zach, Katabi Dina, and Miller Rob. 2014. WiTrack: motion tracking via radio reflections off the body. In Proceedings of the NSDI.Google ScholarGoogle Scholar
  10. [10] Adib Fadel and Katabi Dina. 2013. See through walls with WiFi! In Proceedings of the ACM SIGCOMM. 7586.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] Amitay Noach, Galindo Victor, and Wu Chen Pang. 1972. Theory and Analysis of Phased Array Antennas. John Wiley & Sons.Google ScholarGoogle Scholar
  12. [12] An Zhenlin, Lin Qiongzheng, Li Ping, and Yang Lei. 2020. General-purpose deep tracking platform across protocols for the internet of things. In Proceedings of the ACM MobiSys. 94106.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. [13] Boeringer Daniel Wilharm. 2002. Phased array including a logarithmic spiral lattice of uniformly spaced radiating and receiving elements. US Patent 6,433,754.Google ScholarGoogle Scholar
  14. [14] Cadzow James A.. 1988. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources. IEEE Trans. Acoust, Speech, Sig. Process. 36, 7 (1988), 965979.Google ScholarGoogle ScholarCross RefCross Ref
  15. [15] Capon Jack. 1969. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 57, 8 (1969), 14081418.Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Chiao Richard Y., Thomas Lewis J., and Silverstein Seth D.. 1997. Sparse array imaging with spatially-encoded transmits. In 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No. 97CH36118), Vol. 2. IEEE, 16791682.Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Curlander John C. and McDonough Robert N.. 1991. Synthetic Aperture Radar. Vol. 11. Wiley, New York.Google ScholarGoogle Scholar
  18. [18] Delgado Jesús Alberto Viveros and Mera Carlos Andrés Viteri. 2013. A bio-inspired patch antenna array using Fibonacci sequences in trees. IEEE Anten. Propag. 55, 5 (2013), 192201.Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] DuHamel R. and Ore F.. 1958. Logarithmically periodic antenna designs. In 1958 IRE International Convention Record, Vol. 6. IEEE, 139151.Google ScholarGoogle Scholar
  20. [20] Dyson John. 1959. The equiangular spiral antenna. IRE Trans. Anten. Propag. 7, 2 (1959), 181187.Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Dyson J.. 1965. The characteristics and design of the conical log-spiral antenna. IEEE Trans. Anten. Propag. 13, 4 (1965), 488499.Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Filipović D. S. and Volakis J. L.. 2002. Broadband meanderline slot spiral antenna. IEE Proc. Microw., Anten. Propag. 149, 2 (2002), 98105.Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Fleury Bernard H., Tschudin Martin, Heddergott Ralf, Dahlhaus Dirk, and Pedersen K. Ingeman. 1999. Channel parameter estimation in mobile radio environments using the SAGE algorithm. IEEE J. Select. Areas Commun. 17, 3 (1999), 434450.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. [24] Gjengset Jon, Xiong Jie, McPhillips Graeme, and Jamieson Kyle. 2014. Phaser: Enabling phased array signal processing on commodity WiFi access points. In Proceedings of the ACM MobiCom. 153164.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. [25] Guo Muran, Zhang Yimin D., and Chen Tao. 2018. DOA estimation using compressed sparse array. IEEE Trans. Sig. Process. 66, 15 (2018), 41334146.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. [26] Hawes Matthew B. and Liu Wei. 2013. Robust sparse antenna array design via compressive sensing. In Proceedings of the ACM ICDSP. 15.Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Hawes Matthew B. and Liu Wei. 2014. Compressive sensing-based approach to the design of linear robust sparse antenna arrays with physical size constraint. IET Microw, Anten. Propag. 8, 10 (2014), 736746.Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Huang Donny, Nandakumar Rajalakshmi, and Gollakota Shyamnath. 2014. Feasibility and limits of Wi-Fi imaging. In Proceedings of the ACM SenSys. 266279.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. [29] Jafargholi A., Kamyab M., and Veysi M.. 2011. Spiral array architecture, design, synthesis and application. IET Microw., Anten. Propag. 5, 5 (2011), 503511.Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Joshi Kiran, Bharadia Dinesh, Kotaru Manikanta, and Katti Sachin. 2015. WiDeo: Fine-grained device-free motion tracing using RF backscatter. In Proceedings of the USENIX NSDI. 189204.Google ScholarGoogle Scholar
  31. [31] Kotaru Manikanta, Joshi Kiran, Bharadia Dinesh, and Katti Sachin. 2015. SpotFi: Decimeter level localization using WiFi. In Proceedings of the ACM SIGCOMM. 269282.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Krim Hamid and Viberg Mats. 1996. Two decades of array signal processing research: the parametric approach. IEEE Sig. Process. Mag. 13, 4 (1996), 6794.Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Kumar Swarun, Gil Stephanie, Katabi Dina, and Rus Daniela. 2014. Accurate indoor localization with zero start-up cost. In Proceedings of the ACM MobiCom. 483494.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. [34] Kumar Swarun, Hamed Ezzeldin, Katabi Dina, and Li Li Erran. 2014. LTE radio analytics made easy and accessible. ACM SIGCOMM Comput. Commun. Rev. 44, 4 (2014), 211222.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. [35] Kumaresan R. and Tufts D.. 1983. Estimating the angles of arrival of multiple plane waves. IEEE Trans. Aerosp. Electron. Syst. AES-19 (1983), 134139.Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] Lebret Hervé and Boyd Stephen. 1997. Antenna array pattern synthesis via convex optimization. IEEE Trans. Sig. Process. 45, 3 (1997), 526532.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. [37] Liu Chun-Lin and Vaidyanathan P. P.. 2017. One-bit sparse array DOA estimation. In Proceedings of the ICASSP. IEEE, 31263130.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. [38] Liu T. H., Zhang W. X., Zhang M., and Tsang K. F.. 2000. Low profile spiral antenna with PBG substrate. Electron. Lett. 36, 9 (2000), 779780.Google ScholarGoogle ScholarCross RefCross Ref
  39. [39] Mailloux Robert J.. 2017. Phased Array Antenna Handbook. Artech House.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. [40] McManamon Paul F., Dorschner Terry A., Corkum David L., Friedman Larry J., Hobbs Douglas S., Holz Michael, Liberman Sergey, Nguyen Huy Q., Resler Daniel P., Sharp Richard C. et al. 1996. Optical phased array technology. Proc. IEEE 84, 2 (1996), 268298.Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Miesen Robert, Kirsch Fabian, and Vossiek Martin. 2011. Holographic localization of passive UHF RFID transponders. In Proceedings of the IEEE RFID.Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Moffet Alan. 1968. Minimum-redundancy linear arrays. IEEE Trans. Anten. Propag. 16, 2 (1968), 172175.Google ScholarGoogle ScholarCross RefCross Ref
  43. [43] Nakano H., Kikkawa K., Kondo N., Iitsuka Y., and Yamauchi J.. 2009. Low-profile equiangular spiral antenna backed by an EBG reflector. IEEE Trans. Anten. Propag. 57, 5 (2009), 13091318.Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Ottersten Björn, Viberg Mats, Stoica Petre, and Nehorai Arye. 1993. Exact and large sample maximum likelihood techniques for parameter estimation and detection in array processing. In Radar Array Processing. Springer, 99151.Google ScholarGoogle Scholar
  45. [45] Parr Andreas, Miesen Robert, and Vossiek Martin. 2013. Inverse SAR approach for localization of moving RFID tags. In Proceedings of the IEEE RFID.Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Pu Qifan, Gupta Sidhant, Gollakota Shyamnath, and Patel Shwetak. 2013. Whole-home gesture recognition using wireless signals. In Proceedings of the ACM MobiCom. 2738.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. [47] Qin Guodong, Amin Moeness G., and Zhang Yimin D.. 2019. DOA estimation exploiting sparse array motions. IEEE Trans. Sig. Process. 67, 11 (2019), 30133027.Google ScholarGoogle ScholarCross RefCross Ref
  48. [48] Rabiner Lawrence. 1993. Fundamentals of speech recognition. Fundam. Speech Recog. Prentice-Hall, Inc.Google ScholarGoogle Scholar
  49. [49] Rahul Hariharan Shankar, Kumar Swarun, and Katabi Dina. 2012. JMB: Scaling wireless capacity with user demands. ACM SIGCOMM Comput. Commun. Rev. 42, 4 (2012), 235246.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. [50] Roy R., Paulraj A., and Kailath T.. 1986. ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust. Speech Sig. Process. 34 (1986), 13401342.Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Schmidt Ralph. 1986. Multiple emitter location and signal parameter estimation. IEEE Trans. Anten. Propag. 34, 3 (1986), 276280.Google ScholarGoogle ScholarCross RefCross Ref
  52. [52] Shangguan Longfei, Li Zhenjiang, Yang Zheng, Li Mo, and Liu Yunhao. 2013. OTrack: Order tracking for luggage in mobile RFID systems. In Proceedings of the IEEE INFOCOM.Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Sumanaweera Thilaka S., Schwartz Jodi, and Napolitano Dave. 1999. A spiral 2D phased array for 3D imaging. In 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No. 99CH37027), Vol. 2. IEEE, 12711274.Google ScholarGoogle ScholarCross RefCross Ref
  54. [54] Tcheg Paul, Bello Kolawole D., and Pouhè David. 2017. A planar equiangular spiral antenna array for the V-/W-band. In Proceedings of the IEEE EuCAP. IEEE, 11481152.Google ScholarGoogle ScholarCross RefCross Ref
  55. [55] Viberg Mats, Ottersten Bjorn, and Kailath Thomas. 1991. Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Trans. Sig. Process. 39, 11 (1991), 24362449.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. [56] Volakis J. L., Nurnberger M. W., and Filipovic D. S.. 2001. Slot spiral antenna. IEEE Anten. Propag. Mag. 43, 6 (2001), 1526.Google ScholarGoogle ScholarCross RefCross Ref
  57. [57] Vorobyov Sergiy A.. 2013. Principles of minimum variance robust adaptive beamforming design. Sig. Process. 93, 12 (2013), 32643277.Google ScholarGoogle ScholarCross RefCross Ref
  58. [58] Wang Jue, Adib Fadel, Knepper Ross, Katabi Dina, and Rus Daniela. 2013. RF-compass: Robot object manipulation using RFIDs. In Proceedings of the ACM MobiCom.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. [59] Wang Jue and Katabi Dina. 2013. Dude, where’s my card?: RFID positioning that works with multipath and non-line of sight. In Proceedings of the ACM SIGCOMM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. [60] Xie Yaxiong, Xiong Jie, Li Mo, and Jamieson Kyle. 2016. xD-Track: Leveraging multi-dimensional information for passive Wi-Fi tracking. In Proceedings of the ACM HotWireless. 3943.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. [61] Xie Yaxiong, Xiong Jie, Li Mo, and Jamieson Kyle. 2019. mD-Track: Leveraging multi-dimensionality for passive indoor Wi-Fi tracking. In Proceedings of the ACM MobiCom. 116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. [62] Xie Yaxiong, Zhang Yanbo, Liando Jansen Christian, and Li Mo. 2018. SWAN: Stitched Wi-Fi ANtennas. In Proceedings of the MobiCom. 5166.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. [63] Xiong Jie and Jamieson Kyle. 2010. SecureAngle: Improving wireless security using angle-of-arrival information. In Proceedings of the ACM HotWireless. 16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. [64] Xiong Jie and Jamieson Kyle. 2013. ArrayTrack: A fine-grained indoor location system. In Proceedings of the USENIX NSDI. 7184.Google ScholarGoogle Scholar
  65. [65] Yang Lei, Chen Yekui, Li Xiang-Yang, Xiao Chaowei, Li Mo, and Liu Yunhao. 2014. Tagoram: Real-time tracking of mobile RFID tags to high precision using COTS devices. In Proceedings of the MobiCom. 237248.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. [66] Zhang Bo, Liu Wei, and Gou Xiaoming. 2016. Compressive sensing based sparse antenna array design for directional modulation. IET Microw., Anten. Propag. 11, 5 (2016), 634641.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. LSAB: Enhancing Spatio-temporal Efficiency of AoA Tracking Systems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Sensor Networks
      ACM Transactions on Sensor Networks  Volume 18, Issue 4
      November 2022
      619 pages
      ISSN:1550-4859
      EISSN:1550-4867
      DOI:10.1145/3561986
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 November 2022
      • Online AM: 26 May 2022
      • Accepted: 27 April 2022
      • Received: 25 February 2022
      Published in tosn Volume 18, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Refereed
    • Article Metrics

      • Downloads (Last 12 months)157
      • Downloads (Last 6 weeks)3

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text

    HTML Format

    View this article in HTML Format .

    View HTML Format