Cited By
View all- Hasan FMedley PDrake JChen G(2024)Advancing Hydrology through Machine Learning: Insights, Challenges, and Future Directions Using the CAMELS, Caravan, GRDC, CHIRPS, PERSIANN, NLDAS, GLDAS, and GRACE DatasetsWater10.3390/w1613190416:13(1904)Online publication date: 3-Jul-2024
- Sami MYan DAdhikari SYuan LHan JJiang ZKhalil JZhou YLarson K(2024)EvaNetProceedings of the Thirty-Third International Joint Conference on Artificial Intelligence10.24963/ijcai.2024/133(1200-1208)Online publication date: 3-Aug-2024
- Liu LZhou WGuan KPeng BXu STang JZhu QTill JJia XJiang CWang SQin ZKong HGrant RMezbahuddin SKumar VJin Z(2024)Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystemsNature Communications10.1038/s41467-023-43860-515:1Online publication date: 8-Jan-2024
- Show More Cited By