skip to main content
10.1145/3535511.3535541acmotherconferencesArticle/Chapter ViewAbstractPublication PagessbsiConference Proceedingsconference-collections
research-article

Systematic Mapping on Internet of Things’ Client-Sided Development

Authors Info & Claims
Published:30 June 2022Publication History

ABSTRACT

Context: the Internet of Things (IoT) is a paradigm that provides an ecosystem for a fast-growing quantity of connected devices, also defined as cyber-physical devices. Problem: the creation of Internet of Things solutions is fairly complex, having to integrate and communicate between sensors, devices, and larger systems, presenting many technical challenges not present in the same magnitude as other paradigms. One of the most affected segments is the development of cyber-physical devices. Much of its development energy is spent on the connecting and efficacy of these devices, often overlooking the future impacts of the proposed solution, caused by a lack of software quality. Solution: The execution of a Systematic Mapping in order to bring attention to possible research gaps. SI Theory: This work follows the accepted protocols for systematic mappings, meta-analysis, and Hermeneutics. Methodology: this paper executes a systematic mapping, following well-accepted guidelines in order to systematically gather, include and classify scientific papers according to IoT devices’ own characteristics. Results: 8146 studies were found and reduced to 211 relevant studies that focused on client-side IoT development had their data graphed and analyzed. Our results show a lack of software metrics used, many research gaps and correlations were discovered, when in respect to specific software quality properties as described by the ISO25010 and other characteristics collected, such as programming languages and study domain. Contributions: The main contribution of this study is to expose multiple research gaps present in IoT client-side development. Providing a background for future information system studies on techniques and tools to improve IoT development.

References

  1. [n.d.]. World Internet Users Statistics and 2019 World Population Stats. https://www.internetworldstats.com/stats.htmGoogle ScholarGoogle Scholar
  2. Fadele Ayotunde Alaba, Mazliza Othman, Ibrahim Abaker Targio Hashem, and Faiz Alotaibi. 2017. Internet of Things security: A survey. Journal of Network and Computer Applications 88, March(2017), 10–28. https://doi.org/10.1016/j.jnca.2017.04.002Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Mohsen Hallaj Asghar, Atul Negi, and Nasibeh Mohammadzadeh. 2015. Principle application and vision in Internet of Things (IoT). International Conference on Computing, Communication and Automation, ICCCA 2015 (2015), 427–431. https://doi.org/10.1109/CCAA.2015.7148413Google ScholarGoogle ScholarCross RefCross Ref
  4. Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things: A survey. Computer Networks 54, 15 (oct 2010), 2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Miroslav Bures, Tomas Cerny, and Bestoun S. Ahmed. 2018. Internet of Things: Current challenges in the quality assurance and testing methods. arXiv (2018), 625–634.Google ScholarGoogle Scholar
  6. Louis Coetzee and Johan Eksteen. 2011. Internet of things–promise for the future? An Introduction. (2011).Google ScholarGoogle Scholar
  7. Mariela Cortés, Raphael Saraiva, Marcia Souza, Patricia Mello, and Pamella Soares. 2019. Adoption of software testing in internet of things: a systematic literature mapping. In Proceedings of the IV Brazilian Symposium on Systematic and Automated Software Testing.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ricardo Theis Geraldi, Sheila Reinehr, and Andreia Malucelli. 2020. Software product line applied to the internet of things: A systematic literature review. Information and Software Technology 124, February (2020), 106293. https://doi.org/10.1016/j.infsof.2020.106293Google ScholarGoogle ScholarCross RefCross Ref
  9. Richard Grimmett. 2015. Raspberry Pi robotics projects. Packt Publishing Ltd.Google ScholarGoogle Scholar
  10. Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems 29, 7 (2013), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jenalea Howell. [n.d.]. Number of Connected IoT Devices Will Surge to 125 Billion by 2030, IHS Markit Says. https://technology.ihs.com/596542/number-of-connected-iot-devices-will-surge-to-125-billion-by-2030-ihs-markit-saysGoogle ScholarGoogle Scholar
  12. Mehdi Imani, Abolfazl Qiasi Moghadam, Nasrin Zarif, Maaruf Ali, Omekolsoom Noshiri, Kimia Faramarzi, Hamid Arabnia, and Majid Joudaki. 2018. A comprehensive survey on addressing methods in the Internet of Things. arXiv preprint arXiv:1807.02173(2018).Google ScholarGoogle Scholar
  13. ISO 25010:2011 2011. ISO25010 - Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — System and software quality models. Standard. International Organization for Standardization.Google ScholarGoogle Scholar
  14. Adeel Javed. 2016. Building Arduino projects for the Internet of Things: experiments with real-world applications. Apress.Google ScholarGoogle Scholar
  15. Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, and Stephen Linkman. 2009. Systematic literature reviews in software engineering - A systematic literature review. Information and Software Technology 51, 1 (2009), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Barbara A. Kitchenham, David Budgen, and O. Pearl Brereton. 2010. The value of mapping studies – A participant-observer case study. (2010). https://doi.org/10.14236/ewic/ease2010.4Google ScholarGoogle Scholar
  17. Hari Kishan Kondaveeti, Nandeesh Kumar Kumaravelu, Sunny Dayal Vanambathina, Sudha Ellison Mathe, and Suseela Vappangi. 2021. A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review 40 (2021), 100364. https://doi.org/10.1016/j.cosrev.2021.100364Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mohit Kuri, Sai Anirudh Karre, and Y Raghu Reddy. 2021. Understanding Software Quality Metrics for Virtual Reality Products - A Mapping Study. In 14th Innovations in Software Engineering Conference (Formerly Known as India Software Engineering Conference)(ISEC 2021). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3452383.3452391Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. JR Landis and GG Koch. 1977. Landis amd Koch1977_agreement of categorical data. Biometrics 33, 1 (1977), 159–174.Google ScholarGoogle ScholarCross RefCross Ref
  20. Wei Li. 1998. Another metric suite for object-oriented programming. Journal of Systems and Software 44, 2 (1998), 155–162. https://doi.org/10.1016/S0164-1212(98)10052-3Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Leonardo Ribeiro Machado, Francisco J da Silva, Alex Barradas, Davi Viana, Ariel Teles, and Luciano Coutinho. 2020. Product Quality for Smart Cities Applications: A Mapping Study. In XVI Brazilian Symposium on Information Systems. 1–8.Google ScholarGoogle Scholar
  22. Phu Hong Nguyen, Nicolas Ferry, Gencer Erdogan, Hui Song, Stéphane Lavirotte, Jean-Yves Tigli, and Arnor Solberg. 2019. A Systematic Mapping Study of Deployment and Orchestration Approaches for IoT.. In IoTBDS. 69–82.Google ScholarGoogle Scholar
  23. Alberto S. Nuñez-Varela, Héctor G. Pérez-Gonzalez, Francisco E. Martínez-Perez, and Carlos Soubervielle-Montalvo. 2017. Source code metrics: A systematic mapping study. Journal of Systems and Software 128 (2017), 164–197. https://doi.org/10.1016/j.jss.2017.03.044Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. K. V.Jeeva Padmini, H. M.N. Dilum Bandara, and Indika Perera. 2015. Use of software metrics in agile software development process. MERCon 2015 - Moratuwa Engineering Research Conference (2015), 312–317. https://doi.org/10.1109/MERCon.2015.7112365Google ScholarGoogle ScholarCross RefCross Ref
  25. Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. Systematic mapping studies in software engineering. In 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) 12. 1–10.Google ScholarGoogle ScholarCross RefCross Ref
  26. Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology 64 (2015), 1–18. https://doi.org/10.1016/j.infsof.2015.03.007Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rafael Roberto, João Paulo Lima, and Veronica Teichrieb. 2016. Tracking for mobile devices: A systematic mapping study. Computers and Graphics (Pergamon) 56 (2016), 20–30. https://doi.org/10.1016/j.cag.2016.02.002Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Paul C. Van Oorschot and Sean W. Smith. 2019. The Internet of Things: Security Challenges. IEEE Security and Privacy 17, 5 (2019), 7–9. https://doi.org/10.1109/MSEC.2019.2925918Google ScholarGoogle ScholarCross RefCross Ref
  29. Gary White, Vivek Nallur, and Siobhán Clarke. 2017. Quality of service approaches in IoT: A systematic mapping. Journal of Systems and Software 132 (2017), 186–203.Google ScholarGoogle ScholarCross RefCross Ref
  30. Sabine Wolny, Alexandra Mazak, and Bernhard Wally. 2018. An Initial Mapping Study on MDE4IoT.. In MODELS Workshops. 524–529.Google ScholarGoogle Scholar
  31. Michalis Xenos, D Stavrinoudis, K Zikouli, and D Christodoulakis. 2000. Object-oriented metrics-a survey. Proceedings of the FESMA, 1–10.Google ScholarGoogle Scholar

Index Terms

  1. Systematic Mapping on Internet of Things’ Client-Sided Development
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            SBSI '22: Proceedings of the XVIII Brazilian Symposium on Information Systems
            May 2022
            394 pages

            Copyright © 2022 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 30 June 2022

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Acceptance Rates

            Overall Acceptance Rate181of557submissions,32%
          • Article Metrics

            • Downloads (Last 12 months)15
            • Downloads (Last 6 weeks)0

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format