skip to main content
10.1145/3535694.3535724acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbetConference Proceedingsconference-collections
research-article

Research progress on changes in brain network connections after stroke

Authors Info & Claims
Published:11 July 2022Publication History

ABSTRACT

Stroke represents a major public health problem in society. The impact of stroke is considerable world-wide. Impaired motor function is one of the common symptoms of stroke, which seriously affects the prognosis and life quality of patients. In recent years, motor function rehabilitation has become a new focus. The activation changes in motor-related brain regions reflect the mechanism of motor function rehabilitation after stroke. It includes the process of the brain regions from abnormal activation to a steady state, and the formation of a compensatory connection network. In this article, we summarize the characteristics of activation and connection changes of brain regions during the recovery of motor function after stroke, which lays an idea for the diagnosis and prognostic analysis of recovery of stroke patients, and further guides the research direction of new treatments.

References

  1. Joy, M. T. and Carmichael, S. T. Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nat Rev Neurosci, 22, 1 (Jan 2021), 38-53.Google ScholarGoogle ScholarCross RefCross Ref
  2. Shimamura, N., Katagai, T., Kakuta, K., Matsuda, N., Katayama, K., Fujiwara, N., Watanabe, Y., Naraoka, M. and Ohkuma, H. Rehabilitation and the Neural Network After Stroke. Transl Stroke Res, 8, 6 (Dec 2017), 507-514.Google ScholarGoogle Scholar
  3. Silasi, G. and Murphy, T. H. Stroke and the connectome: how connectivity guides therapeutic intervention. Neuron, 83, 6 (Sep 17 2014), 1354-1368.Google ScholarGoogle ScholarCross RefCross Ref
  4. Breakspear, M., Terry, J. R. and Friston, K. J. Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Network, 14, 4 (Nov 2003), 703-732.Google ScholarGoogle Scholar
  5. Grefkes, C. and Fink, G. R. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain, 134, Pt 5 (May 2011), 1264-1276.Google ScholarGoogle Scholar
  6. Grefkes, C. and Fink, G. R. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol, 13, 2 (Feb 2014), 206-216.Google ScholarGoogle ScholarCross RefCross Ref
  7. Nomura, E. M., Gratton, C., Visser, R. M., Kayser, A., Perez, F. and D'Esposito, M. Double dissociation of two cognitive control networks in patients with focal brain lesions. Proc Natl Acad Sci U S A, 107, 26 (Jun 29 2010), 12017-12022.Google ScholarGoogle ScholarCross RefCross Ref
  8. Cassidy, J. M. and Cramer, S. C. Spontaneous and Therapeutic-Induced Mechanisms of Functional Recovery After Stroke. Transl Stroke Res, 8, 1 (Feb 2017), 33-46.Google ScholarGoogle ScholarCross RefCross Ref
  9. Egawa, N., Lok, J., Washida, K. and Arai, K. Mechanisms of Axonal Damage and Repair after Central Nervous System Injury. Transl Stroke Res, 8, 1 (Feb 2017), 14-21.Google ScholarGoogle ScholarCross RefCross Ref
  10. Cirillo, C., Brihmat, N., Castel-Lacanal, E., Le Friec, A., Barbieux-Guillot, M., Raposo, N., Pariente, J., Viguier, A., Simonetta-Moreau, M., Albucher, J. F., Olivot, J. M., Desmoulin, F., Marque, P., Chollet, F. and Loubinoux, I. Post-stroke remodeling processes in animal models and humans. J Cereb Blood Flow Metab, 40, 1 (Jan 2020), 3-22.Google ScholarGoogle ScholarCross RefCross Ref
  11. Fisher, M. and Albers, G. W. Advanced imaging to extend the therapeutic time window of acute ischemic stroke. Ann Neurol, 73, 1 (Jan 2013), 4-9.Google ScholarGoogle ScholarCross RefCross Ref
  12. Leng, T. and Xiong, Z. G. Treatment for ischemic stroke: From thrombolysis to thrombectomy and remaining challenges. Brain Circ, 5, 1 (Jan-Mar 2019), 8-11.Google ScholarGoogle ScholarCross RefCross Ref
  13. Knecht, S., Rossmuller, J., Unrath, M., Stephan, K. M., Berger, K. and Studer, B. Old benefit as much as young patients with stroke from high-intensity neurorehabilitation: cohort analysis. J Neurol Neurosurg Psychiatry, 87, 5 (May 2016), 526-530.Google ScholarGoogle ScholarCross RefCross Ref
  14. Barthels, D. and Das, H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis, 1866, 4 (Apr 1 2020), 165260.Google ScholarGoogle Scholar
  15. Slujitoru, A. S., Enache, A. L., Pintea, I. L., Rolea, E., Stocheci, C. M., Pop, O. T. and Predescu, A. Clinical and morphological correlations in acute ischemic stroke. Rom J Morphol Embryol, 53, 4 (2012), 917-926.Google ScholarGoogle Scholar
  16. Bacigaluppi, M., Russo, G. L., Peruzzotti-Jametti, L., Rossi, S., Sandrone, S., Butti, E., De Ceglia, R., Bergamaschi, A., Motta, C., Gallizioli, M., Studer, V., Colombo, E., Farina, C., Comi, G., Politi, L. S., Muzio, L., Villani, C., Invernizzi, R. W., Hermann, D. M., Centonze, D. and Martino, G. Neural Stem Cell Transplantation Induces Stroke Recovery by Upregulating Glutamate Transporter GLT-1 in Astrocytes. J Neurosci, 36, 41 (Oct 12 2016), 10529-10544.Google ScholarGoogle Scholar
  17. Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., de Ferranti, S. D., Floyd, J., Fornage, M., Gillespie, C., Isasi, C. R., Jimenez, M. C., Jordan, L. C., Judd, S. E., Lackland, D., Lichtman, J. H., Lisabeth, L., Liu, S., Longenecker, C. T., Mackey, R. H., Matsushita, K., Mozaffarian, D., Mussolino, M. E., Nasir, K., Neumar, R. W., Palaniappan, L., Pandey, D. K., Thiagarajan, R. R., Reeves, M. J., Ritchey, M., Rodriguez, C. J., Roth, G. A., Rosamond, W. D., Sasson, C., Towfighi, A., Tsao, C. W., Turner, M. B., Virani, S. S., Voeks, J. H., Willey, J. Z., Wilkins, J. T., Wu, J. H., Alger, H. M., Wong, S. S., Muntner, P., American Heart Association Statistics, C. and Stroke Statistics, S. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation, 135, 10 (Mar 7 2017), e146-e603.Google ScholarGoogle Scholar
  18. Vijayan, M. and Reddy, P. H. Stroke, Vascular Dementia, and Alzheimer's Disease: Molecular Links. J Alzheimers Dis, 54, 2 (Sep 6 2016), 427-443.Google ScholarGoogle Scholar
  19. Hines, R. M., Davies, P. A., Moss, S. J. and Maguire, J. Functional regulation of GABAA receptors in nervous system pathologies. Curr Opin Neurobiol, 22, 3 (Jun 2012), 552-558.Google ScholarGoogle ScholarCross RefCross Ref
  20. Wang, Y. C., Dzyubenko, E., Sanchez-Mendoza, E. H., Sardari, M., Silva de Carvalho, T., Doeppner, T. R., Kaltwasser, B., Machado, P., Kleinschnitz, C., Bassetti, C. L. and Hermann, D. M. Postacute Delivery of GABA(A) α5 Antagonist Promotes Postischemic Neurological Recovery and Peri-infarct Brain Remodeling. Stroke, 49, 10 (Oct 2018), 2495-2503.Google ScholarGoogle Scholar
  21. Okabe, N., Shiromoto, T., Himi, N., Lu, F., Maruyama-Nakamura, E., Narita, K., Iwachidou, N., Yagita, Y. and Miyamoto, O. Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke. Neuroscience, 339 (Dec 17 2016), 338-362.Google ScholarGoogle ScholarCross RefCross Ref
  22. Gao, F., Wang, S., Guo, Y., Wang, J., Lou, M., Wu, J., Ding, M., Tian, M. and Zhang, H. Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study. Eur J Nucl Med Mol Imaging, 37, 5 (May 2010), 954-961.Google ScholarGoogle ScholarCross RefCross Ref
  23. Dijkhuizen, R. M., Singhal, A. B., Mandeville, J. B., Wu, O., Halpern, E. F., Finklestein, S. P., Rosen, B. R. and Lo, E. H. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci, 23, 2 (Jan 15 2003), 510-517.Google ScholarGoogle ScholarCross RefCross Ref
  24. Dijkhuizen, R. M., Ren, J., Mandeville, J. B., Wu, O., Ozdag, F. M., Moskowitz, M. A., Rosen, B. R. and Finklestein, S. P. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc Natl Acad Sci U S A, 98, 22 (Oct 23 2001), 12766-12771.Google ScholarGoogle ScholarCross RefCross Ref
  25. Strens, L. H., Asselman, P., Pogosyan, A., Loukas, C., Thompson, A. J. and Brown, P. Corticocortical coupling in chronic stroke: its relevance to recovery. Neurology, 63, 3 (Aug 10 2004), 475-484.Google ScholarGoogle ScholarCross RefCross Ref
  26. Oh, B. M., Kim, D. Y. and Paik, N. J. Disinhibition in the unaffected hemisphere is related with the cortical involvement of the affected hemisphere. Int J Neurosci, 120, 7 (Jul 2010), 512-515.Google ScholarGoogle ScholarCross RefCross Ref
  27. Starkey, M. L., Bleul, C., Zörner, B., Lindau, N. T., Mueggler, T., Rudin, M. and Schwab, M. E. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke. Brain, 135, Pt 11 (Nov 2012), 3265-3281.Google ScholarGoogle Scholar
  28. Lindenberg, R., Renga, V., Zhu, L. L., Nair, D. and Schlaug, G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology, 75, 24 (Dec 14 2010), 2176-2184.Google ScholarGoogle ScholarCross RefCross Ref
  29. Talelli, P., Greenwood, R. J. and Rothwell, J. C. Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin Neurophysiol, 117, 8 (Aug 2006), 1641-1659.Google ScholarGoogle ScholarCross RefCross Ref
  30. Volz, L. J., Sarfeld, A. S., Diekhoff, S., Rehme, A. K., Pool, E. M., Eickhoff, S. B., Fink, G. R. and Grefkes, C. Motor cortex excitability and connectivity in chronic stroke: a multimodal model of functional reorganization. Brain Struct Funct, 220, 2 (Mar 2015), 1093-1107.Google ScholarGoogle ScholarCross RefCross Ref
  31. Julkunen, P., Maatta, S., Saisanen, L., Kallioniemi, E., Kononen, M., Jakala, P., Vanninen, R. and Vaalto, S. Functional and structural cortical characteristics after restricted focal motor cortical infarction evaluated at chronic stage - Indications from a preliminary study. Clin Neurophysiol, 127, 8 (Aug 2016), 2775-2784.Google ScholarGoogle ScholarCross RefCross Ref
  32. Wang, J. H. Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons in rats. Brain Res Bull, 60, 1-2 (Apr 15 2003), 53-58.Google ScholarGoogle ScholarCross RefCross Ref
  33. Hara, Y. Brain plasticity and rehabilitation in stroke patients. Journal of Nippon Medical School = Nippon Ika Daigaku zasshi, 82, 1 (2015), 4-13.Google ScholarGoogle Scholar
  34. Nowak, D. A., Bosl, K., Podubecka, J. and Carey, J. R. Noninvasive brain stimulation and motor recovery after stroke. Restor Neurol Neurosci, 28, 4 (2010), 531-544.Google ScholarGoogle Scholar
  35. Zeiler, S. R. and Krakauer, J. W. The interaction between training and plasticity in the poststroke brain. Current opinion in neurology, 26, 6 (Dec 2013), 609-616.Google ScholarGoogle Scholar
  36. Ward, N. S. and Cohen, L. G. Mechanisms underlying recovery of motor function after stroke. Arch Neurol, 61, 12 (Dec 2004), 1844-1848.Google ScholarGoogle ScholarCross RefCross Ref
  37. Pinto, C. B., Saleh Velez, F. G., Lopes, F., de Toledo Piza, P. V., Dipietro, L., Wang, Q. M., Mazwi, N. L., Camargo, E. C., Black-Schaffer, R. and Fregni, F. SSRI and Motor Recovery in Stroke: Reestablishment of Inhibitory Neural Network Tonus. Frontiers in neuroscience, 11 (2017), 637.Google ScholarGoogle Scholar
  38. Park, C. H., Chang, W. H., Ohn, S. H., Kim, S. T., Bang, O. Y., Pascual-Leone, A. and Kim, Y. H. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke, 42, 5 (May 2011), 1357-1362.Google ScholarGoogle ScholarCross RefCross Ref
  39. Crichton, S. L., Bray, B. D., McKevitt, C., Rudd, A. G. and Wolfe, C. D. Patient outcomes up to 15 years after stroke: survival, disability, quality of life, cognition and mental health. J Neurol Neurosurg Psychiatry, 87, 10 (Oct 2016), 1091-1098.Google ScholarGoogle ScholarCross RefCross Ref
  40. Sato, S., Bergmann, T. O. and Borich, M. R. Opportunities for concurrent transcranial magnetic stimulation and electroencephalography to characterize cortical activity in stroke. Front Hum Neurosci, 9 (2015), 250.Google ScholarGoogle ScholarCross RefCross Ref
  41. Weiller, C., Ramsay, S. C., Wise, R. J., Friston, K. J. and Frackowiak, R. S. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol, 33, 2 (Feb 1993), 181-189.Google ScholarGoogle Scholar
  42. Cramer, S. C. and Crafton, K. R. Somatotopy and movement representation sites following cortical stroke. Exp Brain Res, 168, 1-2 (Jan 2006), 25-32.Google ScholarGoogle ScholarCross RefCross Ref
  43. Hiscock, A., Miller, S., Rothwell, J., Tallis, R. C. and Pomeroy, V. M. Informing dose-finding studies of repetitive transcranial magnetic stimulation to enhance motor function: a qualitative systematic review. Neurorehabil Neural Repair, 22, 3 (May-Jun 2008), 228-249.Google ScholarGoogle ScholarCross RefCross Ref
  44. Klimesch, W. alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci, 16, 12 (Dec 2012), 606-617.Google ScholarGoogle ScholarCross RefCross Ref
  45. Nair, D. G., Hutchinson, S., Fregni, F., Alexander, M., Pascual-Leone, A. and Schlaug, G. Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients. Neuroimage, 34, 1 (Jan 1 2007), 253-263.Google ScholarGoogle ScholarCross RefCross Ref
  46. Larivière, S., Ward, N. S. and Boudrias, M. H. Disrupted functional network integrity and flexibility after stroke: Relation to motor impairments. NeuroImage. Clinical, 19 (2018), 883-891.Google ScholarGoogle ScholarCross RefCross Ref
  47. Wang, L., Yu, C., Chen, H., Qin, W., He, Y., Fan, F., Zhang, Y., Wang, M., Li, K., Zang, Y., Woodward, T. S. and Zhu, C. Dynamic functional reorganization of the motor execution network after stroke. Brain, 133, Pt 4 (Apr 2010), 1224-1238.Google ScholarGoogle Scholar
  48. Butefisch, C. M., Kleiser, R., Korber, B., Muller, K., Wittsack, H. J., Homberg, V. and Seitz, R. J. Recruitment of contralesional motor cortex in stroke patients with recovery of hand function. Neurology, 64, 6 (Mar 22 2005), 1067-1069.Google ScholarGoogle ScholarCross RefCross Ref
  49. Takeuchi, N., Tada, T., Chuma, T., Matsuo, Y. and Ikoma, K. Disinhibition of the premotor cortex contributes to a maladaptive change in the affected hand after stroke. Stroke, 38, 5 (May 2007), 1551-1556.Google ScholarGoogle ScholarCross RefCross Ref
  50. Fujii, Y. and Nakada, T. Cortical reorganization in patients with subcortical hemiparesis: neural mechanisms of functional recovery and prognostic implication. J Neurosurg, 98, 1 (Jan 2003), 64-73.Google ScholarGoogle ScholarCross RefCross Ref
  51. Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M. and Weiller, C. Dynamics of language reorganization after stroke. Brain, 129, Pt 6 (Jun 2006), 1371-1384.Google ScholarGoogle Scholar
  52. Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H. and Buckner, R. L. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of neurophysiology, 106, 3 (Sep 2011), 1125-1165.Google ScholarGoogle Scholar
  53. Dimyan, M. A. and Cohen, L. G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol, 7, 2 (Feb 2011), 76-85.Google ScholarGoogle ScholarCross RefCross Ref
  54. Zhang, J., Zhang, Y., Wang, L., Sang, L., Yang, J., Yan, R., Li, P., Wang, J. and Qiu, M. Disrupted structural and functional connectivity networks in ischemic stroke patients. Neuroscience, 364 (Nov 19 2017), 212-225.Google ScholarGoogle ScholarCross RefCross Ref
  55. Carmichael, S. T. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol, 59, 5 (May 2006), 735-742.Google ScholarGoogle ScholarCross RefCross Ref
  56. Carmichael, S. T. Themes and strategies for studying the biology of stroke recovery in the poststroke epoch. Stroke, 39, 4 (Apr 2008), 1380-1388.Google ScholarGoogle ScholarCross RefCross Ref
  57. Carmichael, S. T. and Chesselet, M. F. Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J Neurosci, 22, 14 (Jul 15 2002), 6062-6070.Google ScholarGoogle ScholarCross RefCross Ref
  58. Stroemer, R. P., Kent, T. A. and Hulsebosch, C. E. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke, 26, 11 (Nov 1995), 2135-2144.Google ScholarGoogle ScholarCross RefCross Ref
  59. Leon, S., Yin, Y., Nguyen, J., Irwin, N. and Benowitz, L. I. Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci, 20, 12 (Jun 15 2000), 4615-4626.Google ScholarGoogle ScholarCross RefCross Ref
  60. Carmichael, S. T., Wei, L., Rovainen, C. M. and Woolsey, T. A. New patterns of intracortical projections after focal cortical stroke. Neurobiology of disease, 8, 5 (Oct 2001), 910-922.Google ScholarGoogle Scholar
  61. Schaechter, J. D., Moore, C. I., Connell, B. D., Rosen, B. R. and Dijkhuizen, R. M. Structural and functional plasticity in the somatosensory cortex of chronic stroke patients. Brain, 129, Pt 10 (Oct 2006), 2722-2733.Google ScholarGoogle Scholar
  62. Shiromoto, T., Okabe, N., Lu, F., Maruyama-Nakamura, E., Himi, N., Narita, K., Yagita, Y., Kimura, K. and Miyamoto, O. The Role of Endogenous Neurogenesis in Functional Recovery and Motor Map Reorganization Induced by Rehabilitative Therapy after Stroke in Rats. J Stroke Cerebrovasc Dis, 26, 2 (Feb 2017), 260-272.Google ScholarGoogle Scholar
  63. Nishibe, M., Urban, E. T., 3rd, Barbay, S. and Nudo, R. J. Rehabilitative training promotes rapid motor recovery but delayed motor map reorganization in a rat cortical ischemic infarct model. Neurorehabil Neural Repair, 29, 5 (Jun 2015), 472-482.Google ScholarGoogle ScholarCross RefCross Ref
  64. Herbert, W. J., Powell, K. and Buford, J. A. Evidence for a role of the reticulospinal system in recovery of skilled reaching after cortical stroke: initial results from a model of ischemic cortical injury. Exp Brain Res, 233, 11 (Nov 2015), 3231-3251.Google ScholarGoogle ScholarCross RefCross Ref
  65. Tononi, G., Edelman, G. M. and Sporns, O. Complexity and coherency: integrating information in the brain. Trends Cogn Sci, 2, 12 (Dec 1 1998), 474-484.Google ScholarGoogle ScholarCross RefCross Ref
  66. Carter, A. R., Astafiev, S. V., Lang, C. E., Connor, L. T., Rengachary, J., Strube, M. J., Pope, D. L., Shulman, G. L. and Corbetta, M. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol, 67, 3 (Mar 2010), 365-375.Google ScholarGoogle Scholar
  67. Friston, K. J., Frith, C. D., Liddle, P. F., Frackowiak, R. J. J. o. C. B. F. and Metabolism Functional Connectivity: The Principal-Component Analysis of Large (PET) Data Sets, 13, 1 (1993), 5-14.Google ScholarGoogle Scholar
  68. Gerloff, C., Bushara, K., Sailer, A., Wassermann, E. M., Chen, R., Matsuoka, T., Waldvogel, D., Wittenberg, G. F., Ishii, K., Cohen, L. G. and Hallett, M. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain, 129, Pt 3 (Mar 2006), 791-808.Google ScholarGoogle Scholar
  69. Grefkes, C., Nowak, D. A., Eickhoff, S. B., Dafotakis, M., Kust, J., Karbe, H. and Fink, G. R. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol, 63, 2 (Feb 2008), 236-246.Google ScholarGoogle ScholarCross RefCross Ref
  70. Chollet, F., DiPiero, V., Wise, R. J., Brooks, D. J., Dolan, R. J. and Frackowiak, R. S. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol, 29, 1 (Jan 1991), 63-71.Google ScholarGoogle ScholarCross RefCross Ref
  71. Brion, J. P., Demeurisse, G. and Capon, A. Evidence of cortical reorganization in hemiparetic patients. Stroke, 20, 8 (Aug 1989), 1079-1084.Google ScholarGoogle ScholarCross RefCross Ref
  72. Carey, J. R., Kimberley, T. J., Lewis, S. M., Auerbach, E. J., Dorsey, L., Rundquist, P. and Ugurbil, K. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain, 125, Pt 4 (Apr 2002), 773-788.Google ScholarGoogle Scholar
  73. Platz, T., van Kaick, S., Moller, L., Freund, S., Winter, T. and Kim, I. H. Impairment-oriented training and adaptive motor cortex reorganisation after stroke: a fTMS study. J Neurol, 252, 11 (Nov 2005), 1363-1371.Google ScholarGoogle ScholarCross RefCross Ref
  74. Koski, L., Mernar, T. J. and Dobkin, B. H. Immediate and long-term changes in corticomotor output in response to rehabilitation: correlation with functional improvements in chronic stroke. Neurorehabil Neural Repair, 18, 4 (Dec 2004), 230-249.Google ScholarGoogle ScholarCross RefCross Ref
  75. Liepert, J., Bauder, H., Wolfgang, H. R., Miltner, W. H., Taub, E. and Weiller, C. Treatment-induced cortical reorganization after stroke in humans. Stroke, 31, 6 (Jun 2000), 1210-1216.Google ScholarGoogle ScholarCross RefCross Ref
  76. Lee, J., Lee, M., Kim, D. S. and Kim, Y. H. Functional reorganization and prediction of motor recovery after a stroke: A graph theoretical analysis of functional networks. Restor Neurol Neurosci, 33, 6 (2015), 785-793.Google ScholarGoogle Scholar
  77. Jang, S. H. A review of diffusion tensor imaging studies on motor recovery mechanisms in stroke patients. NeuroRehabilitation, 28, 4 (2011), 345-352.Google ScholarGoogle ScholarCross RefCross Ref
  78. Biernaskie, J., Chernenko, G. and Corbett, D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci, 24, 5 (Feb 4 2004), 1245-1254.Google ScholarGoogle ScholarCross RefCross Ref
  79. Thiel, A. and Vahdat, S. Structural and resting-state brain connectivity of motor networks after stroke. Stroke, 46, 1 (Jan 2015), 296-301.Google ScholarGoogle ScholarCross RefCross Ref
  80. Byrnes, M. L., Thickbroom, G. W., Phillips, B. A. and Mastaglia, F. L. Long-term changes in motor cortical organisation after recovery from subcortical stroke. Brain Res, 889, 1-2 (Jan 19 2001), 278-287.Google ScholarGoogle ScholarCross RefCross Ref
  81. Liu, S., Guo, J., Meng, J., Wang, Z., Yao, Y., Yang, J., Qi, H. and Ming, D. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke. Comput Math Methods Med, 2016 (2016), 2582478.Google ScholarGoogle Scholar
  82. Liu, G., Dang, C., Chen, X., Xing, S., Dani, K., Xie, C., Peng, K., Zhang, J., Li, J., Zhang, J., Chen, L., Pei, Z. and Zeng, J. Structural remodeling of white matter in the contralesional hemisphere is correlated with early motor recovery in patients with subcortical infarction. Restor Neurol Neurosci, 33, 3 (2015), 309-319.Google ScholarGoogle Scholar
  83. Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M. and Grafton, S. T. Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci U S A, 108, 18 (May 3 2011), 7641-7646.Google ScholarGoogle ScholarCross RefCross Ref
  84. Li, W., Li, Y., Zhu, W. and Chen, X. Changes in brain functional network connectivity after stroke. Neural regeneration research, 9, 1 (Jan 1 2014), 51-60.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICBET '22: Proceedings of the 12th International Conference on Biomedical Engineering and Technology
    April 2022
    237 pages
    ISBN:9781450395779
    DOI:10.1145/3535694

    Copyright © 2022 Owner/Author

    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 11 July 2022

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)7
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format