skip to main content
10.1145/3536221.3556572acmconferencesArticle/Chapter ViewAbstractPublication Pagesicmi-mlmiConference Proceedingsconference-collections
research-article

The Impact of Thermal Cues on Affective Responses to Emotionally Resonant Vibrations

Published:07 November 2022Publication History

ABSTRACT

This paper investigates how presenting emotionally resonant vibrotactile stimuli at cool, neutral and warm temperature levels impacts mean ratings for emotional resonance and affective response. Affective vibrotactile stimuli can elicit pleasant or calming responses, making them applicable for emotion regulation. Evoking real-world sensations via emotional resonance can widen their affective range and improve their effectiveness, and allow them to enhance immersive multimodal experiences. Thermotactile cues have been shown to affect emotional responses, but have not been combined with emotionally resonant vibrations to see how they change responses to such cues. This study (n=20) assessed the impact of 3 temperature levels (24℃, 30℃, and 34℃) on 15 emotionally resonant vibrotactile cues and observed if emotionally resonant stimuli exceeded the affective range non-resonant vibrotactile stimuli. The findings suggest that presenting specific resonant vibrations at temperatures that are appropriate for the sensation they evoke can improve emotional resonance and vice versa. In addition, temperature had a positive effect on affective response and emotionally resonant vibrations were found to have a wider affective range than traditional vibrotactile cues. These findings support using emotionally resonant vibrations and thermal cues to elicit desirable emotional responses in emotion regulation and immersive media applications.

Skip Supplemental Material Section

Supplemental Material

References

  1. Imtiaj Ahmed, Ville Harjunen, Giulio Jacucci, Eve Hoggan, Niklas Ravaja, and Michiel M. Spapé. 2016. Reach out and touch me: Effects of four distinct haptic technologies on affective touch in virtual reality. In ICMI 2016 - Proceedings of the 18th ACM International Conference on Multimodal Interaction. https://doi.org/10.1145/2993148.2993171Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Moses Akazue, Martin Halvey, Lynne Baillie, and Stephen Brewster. 2016. The effect of thermal stimuli on the emotional perception of images. In Conference on Human Factors in Computing Systems - Proceedings. 4401–4410. https://doi.org/10.1145/2858036.2858307Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Akshita, Harini Alagarai Sampath, Bipin Indurkhya, Eunhwa Lee, and Yudong Bae. 2015. Towards Multimodal Affective Feedback. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI ’15 (2015), 2043–2052. https://doi.org/10.1145/2702123.2702288Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Y. C.P. Arai, S. Sakakibara, A. Ito, K. Ohshima, T. Sakakibara, T. Nishi, S. Hibino, S. Niwa, and K. Kuniyoshi. 2008. Intra-operative natural sound decreases salivary amylase activity of patients undergoing inguinal hernia repair under epidural anesthesia. Acta Anaesthesiologica Scandinavica 52, 7 (2008), 987–990. https://doi.org/10.1111/j.1399-6576.2008.01649.xGoogle ScholarGoogle ScholarCross RefCross Ref
  5. Ruben T Azevedo, Nell Bennett, Andreas Bilicki, Jack Hooper, and Fotini Markopoulou. 2017. The calming effect of a new wearable device during the anticipation of public speech. NatureApril(2017), 1–7. https://doi.org/10.1038/s41598-017-02274-2Google ScholarGoogle Scholar
  6. Matteo Bianchi, Gaetano Valenza, Antonio Lanata, Alberto Greco, Mimma Nardelli, Antonio Bicchi, and Enzo Pasquale Scilingo. 2017. On the Role of Affective Properties in Hedonic and Discriminant Haptic Systems. International Journal of Social Robotics 9, 1 (2017), 87–95. https://doi.org/10.1007/s12369-016-0371-xGoogle ScholarGoogle ScholarCross RefCross Ref
  7. Kyung Yun Choi and Hiroshi Ishii. 2020. ambienBeat : Wrist-worn Mobile Tactile Biofeedback for Heart Rate Rhythmic Regulation. TEI 2020 (2020), 17–30. https://doi.org/10.1145/3374920.3374938Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Jean Costa, François Guimbretière, Malte Jung, and Tanzeem Choudhury. 2019. BoostMeUp: Improving Cognitive Performance in the Moment by Unobtrusively Regulating Emotions with a Smartwatch. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 2 (2019), 1–23. https://doi.org/10.1145/3328911Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Heather Culbertson, Cara M. Nunez, Ali Israr, Frances Lau, Freddy Abnousi, and Allison M. Okamura. 2018. A social haptic device to create continuous lateral motion using sequential normal indentation. IEEE Haptics Symposium, HAPTICS 2018-March (2018), 32–39. https://doi.org/10.1109/HAPTICS.2018.8357149Google ScholarGoogle ScholarCross RefCross Ref
  10. Susanne Cutshall, Patricia Anderson, Sharon Prinsen, Laura Wentwoth, Tammy L Olney, Penny K Messner, Karen M Brekke, Thoralf M Sundt Iii, Ryan F Kelly, and Brent A Bauer. 2011. Effect of the Combination of Music and Nature Sounds on Pain and Anxiety in Cardiac Surgical Patients: A Randomized Study. Alternative Therapies in Health and Medicine 17, 4 (2011), 16–24.Google ScholarGoogle Scholar
  11. Elaine Czech, Mina Shibasaki, and Keitaro Tsuchiya. 2019. Haptic Remembrance Book Series. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19. ACM Press, New York, New York, USA, 1–6. https://doi.org/10.1145/3290607.3309685Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dobromir Dobrev & Stephen A. Brewster Graham Wilson. 2016. Hot Under the Collar: Mapping Thermal Feedback to Dimensional. CHI ’16, #chi4good (2016), 4838–4849. https://doi.org/10.1088/0022-3727/46/15/155107Google ScholarGoogle Scholar
  13. Martin Halvey, Graham Wilson, Stephen Brewster, and Stephen Hughes. 2012. ” Baby it’s cold outside” the influence of ambient temperature and humidity on thermal feedback. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 715–724.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lucy Handscomb. 2006. Use of bedside sound generators by patients with tinnitus-related sleeping difficulty: Which sounds are preferred and why?Acta Oto-Laryngologica 126, SUPPL. 556 (2006), 59–63. https://doi.org/10.1080/03655230600895275Google ScholarGoogle Scholar
  15. Hikaru Hasegawa, Shogo Okamoto, Ken Ito, and Yoji Yamada. 2019. Affective Vibrotactile Stimuli : Relation between Vibrotactile Parameters and Affective Responses. Transactions of Japan Society of Kansei Engi (2019). https://doi.org/10.5057/ijae.IJAE-D-18-00008Google ScholarGoogle Scholar
  16. Alice Haynes, Jonathan Lawry, Christopher Kent, and Jonathan Rossiter. 2021. Feelmusic: Enriching our emotive experience of music through audio-tactile mappings. Multimodal Technologies and Interaction 5, 6 (2021). https://doi.org/10.3390/mti5060029Google ScholarGoogle Scholar
  17. Janella Hudson, Rachel Ungar, Laurie Albright, Rifky Tkatch, James Schaeffer, and Ellen R. Wicker. 2020. Robotic Pet Use Among Community-Dwelling Older Adults. The journals of gerontology. Series B, Psychological sciences and social sciences 75, 9 (2020), 2018–2028. https://doi.org/10.1093/geronb/gbaa119Google ScholarGoogle Scholar
  18. Gijs Huisman, Aduén Darriba Frederiks, Jan B.F. Van Erp, and Dirk K.J. Heylen. 2016. Simulating affective touch: Using a vibrotactile array to generate pleasant stroking sensations. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9775. https://doi.org/10.1007/978-3-319-42324-1_24Google ScholarGoogle Scholar
  19. Tactile Labs Inc. 2022. Haptuator Markl II Tactile Labs. http://tactilelabs.com/products/haptics/haptuator-mark-ii-v2/.Google ScholarGoogle Scholar
  20. Tactile Labs Inc. 2022. Haptuator-Quad-Amplifier. http://tactilelabs.com/wp-content/uploads/2015/02/Haptuator-Quad-Amplifier.pdf.Google ScholarGoogle Scholar
  21. Marina Iosifyan and Olga Korolkova. 2019. Emotions associated with different textures during touch. Consciousness and Cognition 71, October 2018 (2019), 79–85. https://doi.org/10.1016/j.concog.2019.03.012Google ScholarGoogle Scholar
  22. Ali Israr, Siyan Zhao, Kaitlyn Schwalje, Roberta Klatzky, and Jill Lehman. 2014. Feel Effects. ACM Transactions on Applied Perception 11, 3 (2014), 1–17. https://doi.org/10.1145/2641570 arxiv:1710.03346Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. James Higgins Jacok Wobbrock, Leah Findlater, Darren Gergle. 2011. The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only ANOVA Procedures. CHI 2011 (2011), 1–5.Google ScholarGoogle Scholar
  24. Lynette A. Jones and Anshul Singhal. 2018. Vibrotactile Pattern Identification in a Multisensory Display. In Haptics: Science, Technology, and Applications, Domenico Prattichizzo, Hiroyuki Shinoda, Hong Z. Tan, Emanuele Ruffaldi, and Antonio Frisoli (Eds.). Springer International Publishing, Cham, 401–412.Google ScholarGoogle Scholar
  25. Georgios Karafotias, Akiko Teranishi, Georgios Korres, Friederike Eyssel, Scandar Copti, and Mohamad Eid. 2017. Intensifying emotional reactions via tactile gestures in immersive films. ACM Transactions on Multimedia Computing, Communications and Applications 13, 3(2017). https://doi.org/10.1145/3092840Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Chelsea Kelling, Daniella Pitaro, and Jussi Rantala. 2016. Good vibes: The impact of haptic patterns on stress levels. In AcademicMindtrek 2016 - Proceedings of the 20th International Academic Mindtrek Conference. https://doi.org/10.1145/2994310.2994368Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Shaun Alexander Macdonald, Stephen Brewster, and Frank Pollick. 2020. Eliciting Emotion with Vibrotactile Stimuli Evocative of Real-World Sensations. In ICMI 2020 - Proceedings ofthe 2020 International Conference on Multimodal Interaction. Utrecht, To Appear. https://doi.org/10.1145/3382507.3418812Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Shaun Alexander Macdonald, Euan Freeman, Stephen Brewster, and Frank Pollick. 2021. User Preferences for Calming Affective Haptic Stimuli in Social Settings. ICMI 2021 - Proceedings of the 2021 International Conference on Multimodal Interaction 9781450384, August(2021), 387–396. https://doi.org/10.1145/3462244.3479903Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pardis Miri, Robert Flory, Andero Uusberg, Helen Uusberg, James J. Gross, and Katherine Isbister. 2017. Hapland: A scalable robust Emotion regulation haptic system testbed. In Conference on Human Factors in Computing Systems - Proceedings, Vol. Part F1276. https://doi.org/10.1145/3027063.3053147Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Pardis Miri, Emily Jusuf, Andero Uusberg, Horia Margarit, Robert Flory, Katherine Isbister, Keith Marzullo, and James J. Gross. 2020. Evaluating a Personalizable, Inconspicuous Vibrotactile(PIV) Breathing Pacer for In-the-Moment Affect Regulation. In Conference on Human Factors in Computing Systems - Proceedings. Association for Computing Machinery. https://doi.org/10.1145/3313831.3376757Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Caitlin Morris, Valdemar Danry, and Pattie Maes. 2022. EmbER: A System for Transfer of Interoceptive Sensations to Improve Social Perception. Association for Computing Machinery (ACM), 277–287. https://doi.org/10.1145/3532106.3533550Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. mp3gain 2004. Mp3Gain - Home. http://mp3gain.sourceforge.net/.Google ScholarGoogle Scholar
  33. Mutsuhiro Nakashige, Hidekazu Tamaki, Minoru Kobayashi, Suguru Higashino, and Yuriko Suzuki. 2009. ”Hiya-Atsu” media: Augmenting digital media with temperature. Conference on Human Factors in Computing Systems - Proceedings (2009), 3181–3186. https://doi.org/10.1145/1520340.1520453Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Marianna Obrist, Sriram Subramanian, Elia Gatti, Benjamin Long, and Thomas Carter. 2015. Emotions mediated through mid-air haptics. Conference on Human Factors in Computing Systems - Proceedings 2015-April (2015), 2053–2062. https://doi.org/10.1145/2702123.2702361Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. JACQUELINE J. OGDEN, DONALD G. LINDBURG, and TERRY L. MAPLE. 2010. The Effects of Ecologically-Relevant Sounds on Zoo Visitors. Curator: The Museum Journal 36, 2 (2010), 147–156. https://doi.org/10.1111/j.2151-6952.1993.tb00787.xGoogle ScholarGoogle Scholar
  36. Monica Perusquıa-Hernandez, Marisabel Cuberos Balda, David Antonio Gomez Jauregui, Diego Paez-Granados, Felix Dollack, and Jose Victorio Salazar. 2020. Robot Mirroring: Promoting Empathy with an Artificial Agent by Reflecting the User’s Physiological Affective States. IEEE International Conference on Robot and Human Interactive Communication, 1328–1333.Google ScholarGoogle Scholar
  37. James A. Russell. 1980. A circumplex model of affect. Journal of Personality and Social Psychology 39, 6(1980), 1161–1178. https://doi.org/10.1037/h0077714Google ScholarGoogle ScholarCross RefCross Ref
  38. Katri Salminen, Veikko Surakka, Jani Lylykangas, Jukka Raisamo, Rami Saarinen, Roope Raisamo, Jussi Rantala, and Grigori Evreinov. 2008. Emotional and behavioral responses to haptic stimulation. In Conference on Human Factors in Computing Systems - Proceedings. 1555–1562. https://doi.org/10.1145/1357054.1357298Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Katri Salminen, Veikko Surakka, Jukka Raisamo, Jani Lylykangas, Johannes Pystynen, Roope Raisamo, Kalle Mäkelä, and Teemu Ahmaniemi. 2011. Emotional responses to thermal stimuli. ICMI’11 - Proceedings of the 2011 ACM International Conference on Multimodal Interaction (2011), 193–196. https://doi.org/10.1145/2070481.2070513Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Katri Salminen, Veikko Surakka, Jukka Raisamo, Jani Lylykangas, Roope Raisamo, Kalle Mäkelä, and Teemu Ahmaniemi. 2013. Cold or hot? How thermal stimuli are related to human emotional system?Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7989 LNCS (2013), 20–29. https://doi.org/10.1007/978-3-642-41068-0_3Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Hasti Seifi and Karon E. Maclean. 2013. A first look at individuals’ affective ratings of vibrations. 2013 World Haptics Conference, WHC 2013(2013), 605–610. https://doi.org/10.1109/WHC.2013.6548477Google ScholarGoogle ScholarCross RefCross Ref
  42. Yatiraj Shetty, Shubham Mehta, Diep Tran, Bhavica Soni, and Troy Mcdaniel. 2021. Emotional Response to Vibrothermal Stimuli. Applied Sciences11(2021), 1–16.Google ScholarGoogle Scholar
  43. Takanori Shibata, Yukitaka Kawaguchi, and Kazuyoshi Wada. 2009. Investigation on people living with Paro at home effects of sex difference and owners’ animal preference. Proceedings - IEEE International Workshop on Robot and Human Interactive Communication (2009), 1131–1136. https://doi.org/10.1109/ROMAN.2009.5326201Google ScholarGoogle Scholar
  44. Sang Won Shim and Hong Z. Tan. 2020. palmscape: Calm and pleasant vibrotactile signals. In International Conference on Human-Computer Interaction. 532–548. https://doi.org/10.1007/978-3-030-49713-2_37Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Freesound Team. 2005. About Freesound. https://freesound.org/help/about/.Google ScholarGoogle Scholar
  46. Jordan Tewell, Jon Bird, and George Buchana. 2017. The Heat is On: A Temperature Display for Conveying Affective Feedback. In CHI 2017. 1756–1767. https://doi.org/10.1111/j.1744-6171.1994.tb00244.xGoogle ScholarGoogle ScholarCross RefCross Ref
  47. Masahiko Tsuchiya, A. Asada, K. Ryo, K. Noda, T. Hashino, Y. Sato, E. F. Sato, and Masayasu Inoue. 2003. Relaxing intraoperative natural sound blunts haemodynamic change at the emergence from propofol general anaesthesia and increases the acceptability of anaesthesia to the patient. Acta Anaesthesiologica Scandinavica 47, 8 (2003), 939–943. https://doi.org/10.1034/j.1399-6576.2003.00160.xGoogle ScholarGoogle ScholarCross RefCross Ref
  48. Muhammad Umair, Corina Sas, Niaz Chalabianloo, and Cem Ersoy. 2021. Exploring Personalized Vibrotactile and Thermal Patterns for Affect Regulation. DIS 2021 - Proceedings of the 2021 ACM Designing Interactive Systems Conference: Nowhere and Everywhere(2021), 891–906. https://doi.org/10.1145/3461778.3462042Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Deltcho Valtchanov, Kevin R. Barton, and Colin Ellard. 2010. Restorative Effects of Virtual Nature Settings. Cyberpsychology, Behavior, and Social Networking 13, 5(2010), 503–512. https://doi.org/10.1089/cyber.2009.0308Google ScholarGoogle ScholarCross RefCross Ref
  50. Patrizia Di Campli San Vito, Stephen Brewster, Frank Pollick, Simon Thompson, Lee Skrypchuk, and Alexandros Mouzakitis. 2020. Purring Wheel: Thermal and Vibrotactile Notifications on the Steering Wheel. ICMI 2020 - Proceedings of the 2020 International Conference on Multimodal Interaction, 461–469. https://doi.org/10.1145/3382507.3418825Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Graham Wilson and Stephen A. Brewster. 2017. Multi-Moji: Combining Thermal, Vibrotactile & Visual Stimuli to Expand the Affective Range of Feedback. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems - CHI ’17 (2017), 1743–1755. https://doi.org/10.1145/3025453.3025614Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Graham Wilson, Gavin Davidson, and Stephen Brewster. 2015. In the heat of the moment: Subjective interpretations of thermal feedback during interaction. Conference on Human Factors in Computing Systems - Proceedings 2015-April, 2063–2072. https://doi.org/10.1145/2702123.2702219Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Graham Wilson, Euan Freeman, and Stephen A. Brewster. 2016. Multimodal affective feedback: Combining thermal, vibrotactile, audio and visual signals. ICMI 2016 - Proceedings of the 18th ACM International Conference on Multimodal Interaction (2016), 400–401. https://doi.org/10.1145/2993148.2998522Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Mingdi Xu, Takeshi Tachibana, Nana Suzuki, Eiichi Hoshino, Yuri Terasawa, Norihisa Miki, and Yasuyo Minagawa. 2021. The effect of haptic stimulation simulating heartbeats on the regulation of physiological responses and prosocial behavior under stress: The influence of interoceptive accuracy. Biological Psychology 164, August (2021), 108172. https://doi.org/10.1016/j.biopsycho.2021.108172Google ScholarGoogle ScholarCross RefCross Ref
  55. Steven John Yohanan. 2012. The Haptic Creature Social Human-Robot Interaction through Affective Touch. University of British Columbia Thesis, August (2012), 393.Google ScholarGoogle Scholar
  56. Yongjae Yoo, Hojin Lee, Hyejin Choi, and Seungmoon Choi. 2018. Emotional responses of vibrotactile-thermal stimuli: Effects of constant-temperature thermal stimuli. 2017 7th International Conference on Affective Computing and Intelligent Interaction, ACII 2017 2018-Janua (2018), 273–278. https://doi.org/10.1109/ACII.2017.8273612Google ScholarGoogle Scholar
  57. Yongjae Yoo, Taekbeom Yoo, Jihyun Kong, and Seungmoon Choi. 2015. Emotional responses of tactile icons: Effects of amplitude, frequency, duration, and envelope. IEEE World Haptics Conference, WHC 2015(2015), 235–240. https://doi.org/10.1109/WHC.2015.7177719Google ScholarGoogle Scholar
  58. Yizhen Zhou, Aiko Murata, and Junji Watanabe. 2020. The Calming Effect of Heartbeat Vibration. IEEE Haptics Symposium(2020), 677–683.Google ScholarGoogle Scholar

Index Terms

  1. The Impact of Thermal Cues on Affective Responses to Emotionally Resonant Vibrations

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ICMI '22: Proceedings of the 2022 International Conference on Multimodal Interaction
        November 2022
        830 pages
        ISBN:9781450393904
        DOI:10.1145/3536221

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 November 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate453of1,080submissions,42%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format