skip to main content
10.1145/3539618.3591834acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
short-paper

Learning Query-aware Embedding Index for Improving E-commerce Dense Retrieval

Published: 18 July 2023 Publication History

Abstract

The embedding index has become an essential part of the dense retrieval (DR) system, which enables a fast search for billion of items in online E-commerce applications. To accelerate the retrieval process in industrial scenarios, most of the previous studies only utilize item embeddings. However, the product quantization process without query embeddings will lead to inconsistency between queries and items. A straightforward solution is to put query embedding into the product quantization process. But we found that the distance of the positive query and item embedding pairs is too large, which means the query and item embeddings learned by the two-tower are not fully aligned. This problem would lead to performance decay when directly putting query embeddings into the product quantization.
In this paper, we propose a novel query-aware embedding Index framework, which aligns the query and item embedding space to reduce the distance between positive pairs, thereby mixing the query and item embeddings to learn better cluster centers for product quantization. Specifically, we first propose s symmetric loss to train a better two-tower to achieve space alignment. Subsequently, we propose a mixed quantization strategy to put the query embeddings into the product quantization process for bridging the gap between queries and compressed item embeddings. Extensive experiments show that our framework significantly outperforms previous models on a real-world dataset, which demonstrates the superiority and effectiveness of the framework.

References

[1]
Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, Vol. 35, 8 (2013), 1798--1828.
[2]
Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. 2004. Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on Computational geometry. 253--262.
[3]
Jeffrey Dean. 2009. Challenges in building large-scale information retrieval systems. In Keynote of the 2nd ACM International Conference on Web Search and Data Mining (WSDM), Vol. 10.
[4]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).
[5]
Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product quantization. IEEE transactions on pattern analysis and machine intelligence, Vol. 36, 4 (2013), 744--755.
[6]
Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar. 2020. Accelerating large-scale inference with anisotropic vector quantization. In International Conference on Machine Learning. PMLR, 3887--3896.
[7]
Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan Hanbury. 2021. Efficiently teaching an effective dense retriever with balanced topic aware sampling. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 113--122.
[8]
Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin, Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-based retrieval in facebook search. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2553--2561.
[9]
Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. 2013. Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM international conference on Information & Knowledge Management. 2333--2338.
[10]
Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization for nearest neighbor search. IEEE transactions on pattern analysis and machine intelligence, Vol. 33, 1 (2010), 117--128.
[11]
Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity search with gpus. IEEE Transactions on Big Data, Vol. 7, 3 (2019), 535--547.
[12]
Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-Domain Question Answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 6769--6781.
[13]
Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-HLT. 4171--4186.
[14]
Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage search via contextualized late interaction over bert. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval. 39--48.
[15]
Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xiaoyi Zeng, Xiao-Ming Wu, and Qianli Ma. 2021. Embedding-based Product Retrieval in Taobao Search. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 3181--3189.
[16]
Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2020. Distilling dense representations for ranking using tightly-coupled teachers. arXiv preprint arXiv:2010.11386 (2020).
[17]
Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019).
[18]
Yiming Qiu, Chenyu Zhao, Han Zhang, Jingwei Zhuo, Tianhao Li, Xiaowei Zhang, Songlin Wang, Sulong Xu, Bo Long, and Wen-Yun Yang. 2022. Pre-training Tasks for User Intent Detection and Embedding Retrieval in E-commerce Search. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 4424--4428.
[19]
Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 5835--5847.
[20]
Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang, and Ji-Rong Wen. 2021. PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. 2173--2183.
[21]
Stephen E Robertson and Steve Walker. 1994. Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval. In SIGIR'94. Springer, 232--241.
[22]
Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural networks, Vol. 61 (2015), 85--117.
[23]
Feng Wang and Huaping Liu. 2021. Understanding the behaviour of contrastive loss. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2495--2504.
[24]
Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N Bennett, Junaid Ahmed, and Arnold Overwijk. 2020. Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval. In International Conference on Learning Representations.
[25]
Chunyuan Yuan, Yiming Qiu, Mingming Li, Haiqing Hu, Songlin Wang, and Sulong Xu. 2023. A Multi-Granularity Matching Attention Network for Query Intent Classification in E-commerce Retrieval. arXiv preprint arXiv:2303.15870 (2023).
[26]
Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma. 2021. Optimizing dense retrieval model training with hard negatives. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 1503--1512.
[27]
Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma. 2022. Learning Discrete Representations via Constrained Clustering for Effective and Efficient Dense Retrieval. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. 1328--1336.
[28]
Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. 2020. Repbert: Contextualized text embeddings for first-stage retrieval. arXiv preprint arXiv:2006.15498 (2020).
[29]
Han Zhang, Hongwei Shen, Yiming Qiu, Yunjiang Jiang, Songlin Wang, Sulong Xu, Yun Xiao, Bo Long, and Wen-Yun Yang. 2021. Joint Learning of Deep Retrieval Model and Product Quantization based Embedding Index. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 1718--1722.
[30]
Han Zhang, Songlin Wang, Kang Zhang, Zhiling Tang, Yunjiang Jiang, Yun Xiao, Weipeng Yan, and Wen-Yun Yang. 2020. Towards personalized and semantic retrieval: An end-to-end solution for E-commerce search via embedding learning. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2407--2416.

Cited By

View all
  • (2024)EASE-DR: Enhanced Sentence Embeddings for Dense RetrievalProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657925(2374-2378)Online publication date: 10-Jul-2024

Index Terms

  1. Learning Query-aware Embedding Index for Improving E-commerce Dense Retrieval

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        SIGIR '23: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval
        July 2023
        3567 pages
        ISBN:9781450394086
        DOI:10.1145/3539618
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 18 July 2023

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. dense retrieval
        2. mixed quantization
        3. product quantization
        4. symmetric loss

        Qualifiers

        • Short-paper

        Conference

        SIGIR '23
        Sponsor:

        Acceptance Rates

        Overall Acceptance Rate 792 of 3,983 submissions, 20%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)122
        • Downloads (Last 6 weeks)9
        Reflects downloads up to 05 Mar 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)EASE-DR: Enhanced Sentence Embeddings for Dense RetrievalProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657925(2374-2378)Online publication date: 10-Jul-2024

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media