skip to main content
10.1145/3539618.3591896acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
research-article
Open access

MR2: A Benchmark for Multimodal Retrieval-Augmented Rumor Detection in Social Media

Published: 18 July 2023 Publication History

Abstract

As social media platforms are evolving from text-based forums into multi-modal environments, the nature of misinformation in social media is also transforming accordingly. Misinformation spreaders have recently targeted contextual connections between the modalities e.g., text and image. However, existing datasets for rumor detection mainly focus on a single modality i.e., text. To bridge this gap, we construct MR2, a multimodal multilingual retrieval-augmented dataset for rumor detection. The dataset covers rumors with images and texts, and provides evidence from both modalities that are retrieved from the Internet. Further, we develop established baselines and conduct a detailed analysis of the systems evaluated on the dataset. Extensive experiments show that MR2 will provide a challenging testbed for developing rumor detection systems designed to retrieve and reason over social media posts. Source code and data are available at: https://github.com/THU-BPM/MR2.

Supplemental Material

MP4 File
This video describes a new benchmark for rumor detection based on retrieval in the multimodal domain.

References

[1]
Sara Abdali. 2022. Multi-modal Misinformation Detection: Approaches, Challenges and Opportunities. CoRR abs/2203.13883 (2022). https://doi.org/10.48550/ arXiv.2203.13883 arXiv:2203.13883
[2]
Firoj Alam, Stefano Cresci, Tanmoy Chakraborty, Fabrizio Silvestri, Dimiter Dimitrov, Giovanni Da San Martino, Shaden Shaar, Hamed Firooz, and Preslav Nakov. 2021. A Survey on Multimodal Disinformation Detection. arXiv preprint arXiv:2103.12541 (2021).
[3]
Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull, James Thorne, Andreas Vlachos, Christos Christodoulopoulos, Oana Cocarascu, and Arpit Mittal. 2021. FEVEROUS: Fact Extraction and VERification Over Unstructured and Structured information. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Bench- marks 2021, December 2021, virtual, Joaquin Vanschoren and Sai-Kit Yeung (Eds.). https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ 68d30a9594728bc39aa24be94b319d21-Abstract-round1.html
[4]
Christina Boididou, Symeon Papadopoulos, Yiannis Kompatsiaris, Steve Schifferes, and Nic Newman. 2014. Challenges of computational verification in social multimedia. In Proceedings of the 23rd International Conference on World Wide Web. 743--748.
[5]
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/ hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
[6]
Juan Cao, Peng Qi, Qiang Sheng, Tianyun Yang, Junbo Guo, and Jintao Li. 2020. Ex-ploring the Role of Visual Content in Fake News Detection. CoRR abs/2003.05096 (2020). arXiv:2003.05096 https://arxiv.org/abs/2003.05096
[7]
Carlos Castillo, Marcelo Mendoza, and Barbara Poblete. 2011. Information credibility on twitter. In Proceedings of the 20th International Conference on World Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011, Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi Kumar (Eds.). ACM, 675--684. https://doi.org/10.1145/1963405.1963500
[8]
Gullal Singh Cheema, Sherzod Hakimov, Abdul Sittar, Eric Müller-Budack, Christian Otto, and Ralph Ewerth. 2022. MM-Claims: A Dataset for Multimodal Claim Detection in Social Media. In Findings of the Association for Computational Linguistics: NAACL 2022, Seattle, WA, United States, July 10-15, 2022, Marine Carpuat, Marie-Catherine de Marneffe, and Iván Vladimir Meza Ruíz (Eds.). Association for Computational Linguistics, 962--979. https://doi.org/10.18653/v1/2022.findings-naacl.72
[9]
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-ageNet: A large-scale hierarchical image database. In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA. IEEE Computer Society, 248--255. https: //doi.org/10.1109/CVPR.2009.5206848
[10]
Leon Derczynski, Kalina Bontcheva, Maria Liakata, Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz Zubiaga. 2017. SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017). Association for Computational Linguistics, Vancouver, Canada, 69--76. https://doi.org/10.18653/v1/S17-2006
[11]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, 4171--4186. https://doi.org/10.18653/v1/N19-1423
[12]
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/forum?id=YicbFdNTTy
[13]
Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters. Psychological bulletin 76, 5 (1971), 378.
[14]
Genevieve Gorrell, Ahmet Aker, Kalina Bontcheva, Leon Derczynski, Elena Kochkina, Maria Liakata, and Arkaitz Zubiaga. 2019. SemEval-2019 Task 7: RumourEval, Determining Rumour Veracity and Support for Rumours. In Proceedings of the 13th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2019, Minneapolis, MN, USA, June 6-7, 2019, Jonathan May, Ekaterina Shutova, Aurélie Herbelot, Xiaodan Zhu, Marianna Apidianaki, and Saif M. Mohammad (Eds.). Association for Computational Linguistics, 845--854. https: //doi.org/10.18653/v1/s19-2147
[15]
Han Guo, Juan Cao, Yazi Zhang, Junbo Guo, and Jintao Li. 2018. Rumor Detection with Hierarchical Social Attention Network. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy, October 22-26, 2018, Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selçuk Candan, Alexandros Labrinidis, Assaf Schuster, and Haixun Wang (Eds.). ACM, 943--951. https://doi.org/10.1145/3269206.3271709
[16]
Zhijiang Guo, Michael Sejr Schlichtkrull, and Andreas Vlachos. 2022. A Survey on Automated Fact-Checking. Trans. Assoc. Comput. Linguistics 10 (2022), 178--206. https://doi.org/10.1162/tacl_a_00454
[17]
Aditi Gupta, Hemank Lamba, Ponnurangam Kumaraguru, and Anupam Joshi. 2013. Faking Sandy: characterizing and identifying fake images on Twitter during Hurricane Sandy. In 22nd International World Wide Web Conference, WWW '13, Rio de Janeiro, Brazil, May 13-17, 2013, Companion Volume, Leslie Carr, Alberto H. F. Laender, Bernadette Farias Lóscio, Irwin King, Marcus Fontoura, Denny Vrandecic, Lora Aroyo, José Palazzo M. de Oliveira, Fernanda Lima, and Erik Wilde (Eds.). International World Wide Web Conferences Steering Committee / ACM, 729--736. https://doi.org/10.1145/2487788.2488033
[18]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 770--778. https://doi.org/10.1109/CVPR.2016.90
[19]
Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9, 8 (1997), 1735--1780. https://doi.org/10.1162/neco.1997.9. 8.1735
[20]
Tamanna Hossain, Robert L. Logan IV, Arjuna Ugarte, Yoshitomo Matsubara, Sean Young, and Sameer Singh. 2020. COVIDLies: Detecting COVID-19 Misinformation on Social Media. In Proceedings of the 1st Workshop on NLP for COVID-19 (Part at EMNLP 2020. Association for Computational Linguistics, Online. https: //doi.org/10.18653/v1/2020.nlpcovid19-2.11
[21]
Xuming Hu, Zhijiang Guo, Yu Fu, Lijie Wen, and Philip S. Yu. 2022. Scene Graph Modification as Incremental Structure Expanding. In Proceedings of the 29th International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12-17, 2022. International Committee on Computational Linguistics, 5707--5720. https://aclanthology.org/2022.coling-1.502
[22]
Xuming Hu, Zhijiang Guo, Guanyu Wu, Aiwei Liu, Lijie Wen, and Philip S. Yu. 2022. CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022, Seattle, WA, United States, July 10-15, 2022, Marine Carpuat, Marie-Catherine de Marneffe, and Iván Vladimir Meza Ruíz (Eds.). Association for Computational Linguistics, 3362--3376. https://doi.org/10.18653/v1/2022.naacl-main.246
[23]
Zhiwei Jin, Juan Cao, Han Guo, Yongdong Zhang, and Jiebo Luo. 2017. Multimodal fusion with recurrent neural networks for rumor detection on microblogs. In Proceedings of the 25th ACM international conference on Multimedia. 795--816.
[24]
Dhruv Khattar, Jaipal Singh Goud, Manish Gupta, and Vasudeva Varma. 2019. MVAE: Multimodal Variational Autoencoder for Fake News Detection. In The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and Leila Zia (Eds.). ACM, 2915--2921. https://doi.org/10. 1145/3308558.3313552
[25]
Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl
[26]
Elena Kockina, Maria Liakata, and Isabelle Augenstein. 2017. Turing at SemEval-2017 Task 8: Sequential Approach to Rumour Stance Classification with Branch-LSTM. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017). Association for Computational Linguistics, Vancouver, Canada, 475--480. https://doi.org/10.18653/v1/S17-2083
[27]
Ziyi Kou, Daniel Yue Zhang, Lanyu Shang, and Dong Wang. 2020. ExFaux: A Weakly Supervised Approach to Explainable Fauxtography Detection. In 2020 IEEE International Conference on Big Data (IEEE BigData 2020), Atlanta, GA, USA, December 10-13, 2020, Xintao Wu, Chris Jermaine, Li Xiong, Xiaohua Hu, Olivera Kotevska, Siyuan Lu, Weija Xu, Srinivas Aluru, Chengxiang Zhai, Eyhab Al-Masri, Zhiyuan Chen, and Jeff Saltz (Eds.). IEEE, 631--636. https://doi.org/10. 1109/BigData50022.2020.9378019
[28]
Stephan Lewandowsky and Sander van der Linden. 2021. Countering Misinformation and Fake News Through Inoculation and Prebunking. European Review of Social Psychology 0, 0 (2021), 1--38. https://doi.org/10.1080/10463283.2021.1876983 arXiv:https://doi.org/10.1080/10463283.2021.1876983
[29]
Jiawen Li, Yudianto Sujana, and Hung-Yu Kao. 2020. Exploiting Microblog Conversation Structures to Detect Rumors. In Proceedings of the 28th International Conference on Computational Linguistics. International Committee on Computational Linguistics, Barcelona, Spain (Online), 5420--5429. https://doi.org/10. 18653/v1/2020.coling-main.473
[30]
Anders Edelbo Lillie, Emil Refsgaard Middelboe, and Leon Derczynski. 2019. Joint Rumour Stance and Veracity Prediction. In Proceedings of the 22nd Nordic Conference on Computational Linguistics. Linköping University Electronic Press, Turku, Finland, 208--221. https://www.aclweb.org/anthology/W19-6122
[31]
Xiaomo Liu, Armineh Nourbakhsh, Quanzhi Li, Rui Fang, and Sameena Shah. 2015. Real-time rumor debunking on twitter. In Proceedings of the 24th ACM international on conference on information and knowledge management. 1867--1870.
[32]
Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019).
[33]
Yi-Ju Lu and Cheng-Te Li. 2020. GCAN: Graph-aware co-attention networks for explainable fake news detection on social media. arXiv preprint arXiv:2004.11648 (2020).
[34]
Jing Ma and Wei Gao. 2020. Debunking Rumors on Twitter with Tree Transformer. In Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, Donia Scott, Núria Bel, and Chengqing Zong (Eds.). International Committee on Computational Linguistics, 5455--5466. https://doi.org/10.18653/v1/2020.coling-main.476
[35]
Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon, Bernard J. Jansen, Kam-Fai Wong, and Meeyoung Cha. 2016. Detecting Rumors from Microblogs with Recurrent Neural Networks. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, Subbarao Kambhampati (Ed.). IJCAI/AAAI Press, 3818--3824. http: //www.ijcai.org/Abstract/16/537
[36]
Jing Ma, Wei Gao, and Kam-Fai Wong. 2017. Detect rumors in microblog posts using propagation structure via kernel learning. Association for Computational Linguistics.
[37]
Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Rumor Detection on Twitter with Tree-structured Recursive Neural Networks. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, 1980--1989. https://doi.org/10.18653/v1/P18-1184
[38]
Yisroel Mirsky and Wenke Lee. 2021. The creation and detection of deepfakes: A survey. ACM Computing Surveys (CSUR) 54, 1 (2021), 1--41.
[39]
Tanushree Mitra and Eric Gilbert. 2015. CREDBANK: A Large-Scale Social Media Corpus With Associated Credibility Annotations. In Proceedings of the Ninth International Conference on Web and Social Media, ICWSM 2015, University of Oxford, Oxford, UK, May 26-29, 2015, Meeyoung Cha, Cecilia Mascolo, and Christian Sandvig (Eds.). AAAI Press, 258--267. http://www.aaai.org/ocs/index. php/ICWSM/ICWSM15/paper/view/10582
[40]
Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M. Bronstein. 2019. Fake News Detection on Social Media using Geometric Deep Learning. CoRR abs/1902.06673 (2019). arXiv:1902.06673 http://arxiv.org/abs/ 1902.06673
[41]
Qiong Nan, Juan Cao, Yongchun Zhu, Yanyan Wang, and Jintao Li. 2021. MD-FEND: Multi-domain fake news detection. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 3343--3347.
[42]
Dan Saattrup Nielsen and Ryan McConville. 2022. MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset. In SIGIR '22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM, 3141--3153. https://doi.org/10.1145/3477495.3531744
[43]
Kashyap Popat, Subhabrata Mukherjee, Jannik Strötgen, and Gerhard Weikum. 2016. Credibility Assessment of Textual Claims on the Web. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016, Snehasis Mukhopadhyay, ChengXiang Zhai, Elisa Bertino, Fabio Crestani, Javed Mostafa, Jie Tang, Luo Si, Xiaofang Zhou, Yi Chang, Yunyao Li, and Parikshit Sondhi (Eds.). ACM, 2173--2178. https://doi.org/10.1145/2983323.2983661
[44]
Vahed Qazvinian, Emily Rosengren, Dragomir R. Radev, and Qiaozhu Mei. 2011. Rumor has it: Identifying Misinformation in Microblogs. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Edinburgh, Scotland, UK., 1589--1599. https: //www.aclweb.org/anthology/D11-1147
[45]
Shengsheng Qian, Jinguang Wang, Jun Hu, Quan Fang, and Changsheng Xu. 2021. Hierarchical multi-modal contextual attention network for fake news detection. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 153--162.
[46]
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models From Natural Language Supervision. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 8748--8763. http://proceedings.mlr.press/v139/radford21a.html
[47]
Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI blog 1, 8 (2019), 9.
[48]
Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022. Hierarchical Text-Conditional Image Generation with CLIP Latents. CoRR abs/2204.06125 (2022). https://doi.org/10.48550/arXiv.2204.06125 arXiv:2204.06125
[49]
Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. 2021. Zero-Shot Text-to-Image Generation. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 8821--8831. http://proceedings.mlr.press/v139/ramesh21a.html
[50]
Dongning Rao, Xin Miao, Zhihua Jiang, and Ran Li. 2021. STANKER: Stacking Network based on Level-grained Attention-masked BERT for Rumor Detection on Social Media. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for Computational Linguistics, 3347--3363. https://doi.org/10.18653/v1/2021.emnlp-main.269
[51]
Jon Roozenbeek, Sander van der Linden, and Thomas Nygren. 2020. Prebunking interventions based on the psychological theory of "inoculation" can reduce susceptibility to misinformation across cultures. The Harvard Kennedy School Misinformation Review 1, 2 (2020). arXiv:https://doi.org/10.37016/mr-2020-008
[52]
Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. 2022. Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. CoRR abs/2205.11487 (2022). https: //doi.org/10.48550/arXiv.2205.11487 arXiv:2205.11487
[53]
Shivam Sharma, Firoj Alam, Md. Shad Akhtar, Dimitar Dimitrov, Giovanni Da San Martino, Hamed Firooz, Alon Y. Halevy, Fabrizio Silvestri, Preslav Nakov, and Tanmoy Chakraborty. 2022. Detecting and Understanding Harmful Memes: A Survey. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, Luc De Raedt (Ed.). ijcai.org, 5597--5606. https://doi.org/10.24963/ijcai.2022/781
[54]
Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake News Detection on Social Media: A Data Mining Perspective. SIGKDD Explor. 19, 1 (2017), 22--36. https://doi.org/10.1145/3137597.3137600
[55]
Malcolm Slaney and Michael A. Casey. 2008. Locality-Sensitive Hashing for Finding Nearest Neighbors [Lecture Notes]. IEEE Signal Process. Mag. 25, 2 (2008), 128--131. https://doi.org/10.1109/MSP.2007.914237
[56]
Eugenio Tacchini, Gabriele Ballarin, Marco L. Della Vedova, Stefano Moret, and Luca de Alfaro. 2017. Some Like it Hoax: Automated Fake News Detection in Social Networks. CoRR abs/1704.07506 (2017). arXiv:1704.07506 http://arxiv.org/ abs/1704.07506
[57]
Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics, Beijing, China, 1556--1566. https://doi.org/10.3115/v1/P15-1150
[58]
Quang-Tien Tran, Thanh-Phuc Tran, Minh-Son Dao, Tuan-Vinh La, Anh-Duy Tran, and Duc Tien Dang Nguyen. 2022. A Textual-Visual-Entailment-based Unsupervised Algorithm for Cheapfake Detection. In Proceedings of the 30th ACM International Conference on Multimedia. 7145--7149.
[59]
Sander van der Linden, Anthony Leiserowitz, Seth Rosenthal, and Edward Maibach. 2017. Inoculating the Public against Misinformation about Climate Change. Global Challenges 1, 2 (2017), 1600008. https://doi.org/10.1002/gch2. 201600008 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/gch2.201600008
[60]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5998--6008. https://proceedings.neurips.cc/paper/2017/hash/ 3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
[61]
Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview. net/forum?id=rJXMpikCZ
[62]
Svitlana Volkova, Kyle Shaffer, Jin Yea Jang, and Nathan Hodas. 2017. Separating Facts from Fiction: Linguistic Models to Classify Suspicious and Trusted News Posts on Twitter. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Association for Computational Linguistics, Vancouver, Canada, 647--653. https://doi.org/10.18653/v1/P17-2102
[63]
Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A. Efros. 2020. CNN-Generated Images Are Surprisingly Easy to Spot... for Now. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision Foundation / IEEE, 8692--8701. https://doi.org/10.1109/CVPR42600.2020.00872
[64]
Yaqing Wang, Fenglong Ma, Zhiwei Jin, Ye Yuan, Guangxu Xun, Kishlay Jha, Lu Su, and Jing Gao. 2018. EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018, Yike Guo and Faisal Farooq (Eds.). ACM, 849--857. https://doi.org/10. 1145/3219819.3219903
[65]
Lingwei Wei, Dou Hu, Wei Zhou, Zhaojuan Yue, and Songlin Hu. 2021. Towards Propagation Uncertainty: Edge-enhanced Bayesian Graph Convolutional Networks for Rumor Detection. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.). Association for Computational Linguistics, 3845--3854. https://doi.org/10.18653/v1/2021.acl-long.297
[66]
Yang Wu, Pengwei Zhan, Yunjian Zhang, Liming Wang, and Zhen Xu. 2021. Multimodal fusion with co-attention networks for fake news detection. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. 2560--2569.
[67]
Xiaoyu Yang, Yuefei Lyu, Tian Tian, Yifei Liu, Yudong Liu, and Xi Zhang. 2020. Rumor Detection on Social Media with Graph Structured Adversarial Learning. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, Christian Bessiere (Ed.). ijcai.org, 1417--1423. https: //doi.org/10.24963/ijcai.2020/197
[68]
Chunyuan Yuan, Qianwen Ma, Wei Zhou, Jizhong Han, and Songlin Hu. 2019. Jointly Embedding the Local and Global Relations of Heterogeneous Graph for Rumor Detection. In 2019 IEEE International Conference on Data Mining, ICDM 2019, Beijing, China, November 8-11, 2019, Jianyong Wang, Kyuseok Shim, and Xindong Wu (Eds.). IEEE, 796--805. https://doi.org/10.1109/ICDM.2019.00090
[69]
Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and Yejin Choi. 2019. Defending Against Neural Fake News. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 9051--9062. https://proceedings.neurips.cc/paper/2019/hash/ 3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
[70]
Amy X. Zhang, Aditya Ranganathan, S. Metz, S. Appling, Connie Moon Sehat, Norman Gilmore, Nick B. Adams, E. Vincent, J. Lee, Martin Robbins, Ed Bice, Sandro Hawke, D. Karger, and An Xiao Mina. 2018. A Structured Response to Misinformation: Defining and Annotating Credibility Indicators in News Articles. Companion Proceedings of the The Web Conference 2018 (2018).
[71]
Daniel Yue Zhang, Lanyu Shang, Biao Geng, Shuyue Lai, Ke Li, Hongmin Zhu, Md. Tanvir Al Amin, and Dong Wang. 2018. FauxBuster: A Content-free Fauxtography Detector Using Social Media Comments. In IEEE International Conference on Big Data, Big Data 2018, Seattle, WA, USA, December 10-13, 2018, Naoki Abe, Huan Liu, Calton Pu, Xiaohua Hu, Nesreen K. Ahmed, Mu Qiao, Yang Song, Donald Kossmann, Bing Liu, Kisung Lee, Jiliang Tang, Jingrui He, and Jeffrey S. Saltz (Eds.). IEEE, 891--900. https://doi.org/10.1109/BigData.2018.8622344
[72]
Xueyao Zhang, Juan Cao, Xirong Li, Qiang Sheng, Lei Zhong, and Kai Shu. 2021. Mining Dual Emotion for Fake News Detection. In WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia (Eds.). ACM / IW3C2, 3465--3476. https://doi.org/10.1145/3442381.3450004
[73]
Jiaqi Zheng, Xi Zhang, Sanchuan Guo, Quan Wang, Wenyu Zang, and Yongdong Zhang. 2022. MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, Luc De Raedt (Ed.). ijcai.org, 2413--2419. https://doi.org/10.24963/ijcai.2022/335
[74]
Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva, Maria Liakata, and Rob Procter. 2018. Detection and Resolution of Rumours in Social Media: A Survey. ACM Comput. Surv. 51, 2 (2018), 32:1-32:36. https://doi.org/10.1145/3161603
[75]
Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva, Maria Liakata, and Rob Procter. 2018. Detection and Resolution of Rumours in Social Media: A Survey. ACM Comput. Surv. 51, 2 (2018), 32:1-32:36. https://doi.org/10.1145/3161603
[76]
Arkaitz Zubiaga, Maria Liakata, and Rob Procter. 2017. Exploiting context for rumour detection in social media. In International conference on social informatics. Springer, 109--123.
[77]
Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geraldine Wong Sak Hoi, and Peter Tolmie. 2016. Analysing how people orient to and spread rumours in social media by looking at conversational threads. PloS one 11, 3 (2016), e0150989.
[78]
Chaoyuan Zuo, Ayla Karakas, and Ritwik Banerjee. 2018. A Hybrid Recognition System for Check-worthy Claims Using Heuristics and Supervised Learning. In Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum, Avignon, France, September 10-14, 2018 (CEUR Workshop Proceedings, Vol. 2125), Linda Cappellato, Nicola Ferro, Jian-Yun Nie, and Laure Soulier (Eds.). CEUR-WS.org. http://ceur-ws.org/Vol-2125/paper_143.pdf

Cited By

View all
  • (2025)ADA-UDAExpert Systems with Applications: An International Journal10.1016/j.eswa.2024.125487261:COnline publication date: 1-Feb-2025
  • (2025)A Survey of Approaches to Early Rumor Detection on Microblogging Platforms: Computational and Socio‐Psychological InsightsWIREs Data Mining and Knowledge Discovery10.1002/widm.7000115:1Online publication date: 23-Feb-2025
  • (2024)Augmenting Multimodal Content Representation with Transformers for Misinformation DetectionBig Data and Cognitive Computing10.3390/bdcc81001348:10(134)Online publication date: 11-Oct-2024
  • Show More Cited By

Index Terms

  1. MR2: A Benchmark for Multimodal Retrieval-Augmented Rumor Detection in Social Media

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SIGIR '23: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval
      July 2023
      3567 pages
      ISBN:9781450394086
      DOI:10.1145/3539618
      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 18 July 2023

      Check for updates

      Author Tags

      1. multimodal retrieval-augmented methods
      2. rumor detection benchmark
      3. social media

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      SIGIR '23
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 792 of 3,983 submissions, 20%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)1,879
      • Downloads (Last 6 weeks)171
      Reflects downloads up to 05 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)ADA-UDAExpert Systems with Applications: An International Journal10.1016/j.eswa.2024.125487261:COnline publication date: 1-Feb-2025
      • (2025)A Survey of Approaches to Early Rumor Detection on Microblogging Platforms: Computational and Socio‐Psychological InsightsWIREs Data Mining and Knowledge Discovery10.1002/widm.7000115:1Online publication date: 23-Feb-2025
      • (2024)Augmenting Multimodal Content Representation with Transformers for Misinformation DetectionBig Data and Cognitive Computing10.3390/bdcc81001348:10(134)Online publication date: 11-Oct-2024
      • (2024)Harmfulness metrics in digital twins of social network rumors detection in cloud computing environmentJournal of Cloud Computing: Advances, Systems and Applications10.1186/s13677-024-00596-x13:1Online publication date: 8-Feb-2024
      • (2024)CFIR: Fast and Effective Long-Text To Image Retrieval for Large CorporaProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657741(2188-2198)Online publication date: 10-Jul-2024
      • (2024)ESCNet: Entity-enhanced and Stance Checking Network for Multi-modal Fact-CheckingProceedings of the ACM Web Conference 202410.1145/3589334.3645455(2429-2440)Online publication date: 13-May-2024
      • (2024)Fast Rumor Detection in Social Networks Through Large Language Models-Based Semantic EnhancementJournal of Circuits, Systems and Computers10.1142/S0218126625501178Online publication date: 28-Dec-2024
      • (2024)Focusing on Relevant Responses for Multi-Modal Rumor DetectionIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.338969436:11(6225-6236)Online publication date: 1-Nov-2024
      • (2024)SARDJournal of King Saud University - Computer and Information Sciences10.1016/j.jksuci.2024.10216036:8Online publication date: 1-Oct-2024
      • (2024)Topic AudiolizationInformation Processing and Management: an International Journal10.1016/j.ipm.2023.10356361:1Online publication date: 1-Jan-2024
      • Show More Cited By

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media