skip to main content
10.1145/3543377.3543378acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbtConference Proceedingsconference-collections
research-article

Sublingual Microcirculation Imaging with Novel Optically-parallel Probe and Accurate Microcirculation Vessel Segmentation

Authors Info & Claims
Published:08 August 2022Publication History

ABSTRACT

Assessment of the perfusion state for capillaries provides important guidances in diagnosis and treatment of critically ill patients. A high-quality capture of video and image, convenient and effective analysis of vessels are the foundation of microcirculation assessment in clinical application. Here, we experimentally develop a sublingual microcirculation monitoring and imaging system that uses a front-end probe parallel to the bottom of tongue to control the force on sublingual tissues, and propose a U-Net based segmentation approach for extracting the vascular structures. Human sublingual microcirculation videos are acquired from both sidestream dark field and self-built imaging system to train and test the algorithm. The model locates most of blood vessels accurately and the area under receiver operating characteristic curve measure of the model achieves 0.95, which demonstrates an excellent performance and robustness of our algorithm.

References

  1. Piagnerelli, M., Ince, C., and Dubin, A. (2012). Microcirculation. Critical Care Research and Practice, 2012: 867176.Google ScholarGoogle ScholarCross RefCross Ref
  2. Sakr, Y., Dubois, M. J., De Backer, D., Creteur, J., and Vincent, J. L. (2004). Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Critical Care Medicine, 32(9), 1825-1831.Google ScholarGoogle ScholarCross RefCross Ref
  3. Edul, V. S. K., Enrico, C., Laviolle, B., Vazquez, A. R., Ince, C., and Dubin, A. (2012). Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Critical Care Medicine, 40(5), 1443-1448..Google ScholarGoogle ScholarCross RefCross Ref
  4. Trzeciak, S., Dellinger, R. P., Parrillo, J. E., Guglielmi, M., Bajaj, J., Abate, N. L., Arnold, R.C., Colilla, S., Zanotti, S., Hollenberg, S.M., and in Resuscitation, M. A. (2007). Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Annals of Emergency Medicine, 49(1), 88-98.Google ScholarGoogle ScholarCross RefCross Ref
  5. De Backer, D., Hollenberg, S., Boerma, C., Goedhart, P., Büchele, G., Ospina-Tascon, G., Dobbe, I., and Ince, C. (2007). How to evaluate the microcirculation: report of a round table conference. Critical Care, 11(5), 1-9.Google ScholarGoogle ScholarCross RefCross Ref
  6. Hilty, M. P., Guerci, P., Ince, Y., Toraman, F., and Ince, C. (2019). MicroTools enables automated quantification of capillary density and red blood cell velocity in handheld vital microscopy. Communications Biology, 2(1), 1-15.Google ScholarGoogle ScholarCross RefCross Ref
  7. Groner, W., Winkelman, J. W., Harris, A. G., Ince, C., Bouma, G. J., Messmer, K., and Nadeau, R. G. (1999). Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nature Medicine, 5(10), 1209-1212.Google ScholarGoogle ScholarCross RefCross Ref
  8. Goedhart, P. T., Khalilzada, M., Bezemer, R., Merza, J., and Ince, C. (2007). Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Optics Express, 15(23), 15101-15114.Google ScholarGoogle ScholarCross RefCross Ref
  9. Sherman, H., Klausner, S., and Cook, W. A. (1971). Incident dark-field illumination: a new method for microcirculatory study. Angiology, 22(5), 295-303.Google ScholarGoogle ScholarCross RefCross Ref
  10. Massey, M. J., and Shapiro, N. I. (2015). A guide to human in vivo microcirculatory flow image analysis. Critical Care, 20(1), 1-10.Google ScholarGoogle ScholarCross RefCross Ref
  11. Lindert, J., Werner, J., Redlin, M., Kuppe, H., Habazettl, H., and Pries, A. R. (2002). OPS imaging of human microcirculation: a short technical report. Journal of Vascular Research, 39(4), 368-372.Google ScholarGoogle ScholarCross RefCross Ref
  12. Balestra, G. M., Bezemer, R., Boerma, E. C., Yong, Z. Y., Sjauw, K. D., Engstrom, A. E., Koopmans, M., and Ince, C. (2010). Improvement of sidestream dark field imaging with an image acquisition stabilizer. BMC Medical Imaging, 10(1), 1-7.Google ScholarGoogle ScholarCross RefCross Ref
  13. Liu, C., Gomez, H., Narasimhan, S., Dubrawski, A., Pinsky, M. R., and Zuckerbraun, B. (2015). Real-time visual analysis of microvascular blood flow for critical care. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2217-2225.Google ScholarGoogle Scholar
  14. Mahmoud, O., Janssen, G. H., and El-Sakka, M. R. (2020). Machine-Learning-Based Functional Microcirculation Analysis. Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 08, pp. 13326-13331.Google ScholarGoogle ScholarCross RefCross Ref
  15. Ellis, C. G., Ellsworth, M. L., Pittman, R. N., and Burgess, W. L. (1992). Application of image analysis for evaluation of red blood cell dynamics in capillaries. Microvascular Research, 44(2), 214-225.Google ScholarGoogle ScholarCross RefCross Ref
  16. Steger, C. (1998). An unbiased detector of curvilinear structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(2), 113-125.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hashemzadeh, M., and Azar, B. A. (2019). Retinal blood vessel extraction employing effective image features and combination of supervised and unsupervised machine learning methods. Artificial Intelligence in Medicine, 95, 1-15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mo, J., and Zhang, L. (2017). Multi-level deep supervised networks for retinal vessel segmentation. International Journal of Computer Assisted Radiology and Surgery,12(12), 2181-2193.Google ScholarGoogle ScholarCross RefCross Ref
  19. Zhu, C., Zou, B., Zhao, R., Cui, J., Duan, X., Chen, Z., and Liang, Y. (2017). Retinal vessel segmentation in colour fundus images using extreme learning machine. Computerized Medical Imaging and Graphics, 55, 68-77.Google ScholarGoogle ScholarCross RefCross Ref
  20. Hu, K., Zhang, Z., Niu, X., Zhang, Y., Cao, C., Xiao, F., and Gao, X. (2018). Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing, 309, 179-191.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Demir, S., Mirshahi, N., Tiba, M. H., Draucker, G., Ward, K., Hobson, R., and Najarian, K. (2009). Image processing and machine learning for diagnostic analysis of microcirculation. ICME International Conference on Complex Medical Engineering, pp. 1-5.Google ScholarGoogle ScholarCross RefCross Ref
  22. Zuiderveld, K. (1994). Contrast limited adaptive histogram equalization. Graphics Gems, 474-485.Google ScholarGoogle ScholarCross RefCross Ref
  23. Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234-241.Google ScholarGoogle ScholarCross RefCross Ref
  24. Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.Google ScholarGoogle Scholar
  25. Frangi, A. F., Niessen, W. J., Vincken, K. L., and Viergever, M. A. (1998). Multiscale vessel enhancement filtering. International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 130-137.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lorenz, C., Carlsen, I. C., Buzug, T. M., Fassnacht, C., and Weese, J. (1997). Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. International Conference on Computer Vision, Virtual Reality, and Robotics in Medicine, pp. 233-242.Google ScholarGoogle ScholarCross RefCross Ref
  27. Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., and Kikinis, R. (1997). 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. International Conference on Computer Vision, Virtual Reality, and Robotics in Medicine, pp. 213-222.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICBBT '22: Proceedings of the 14th International Conference on Bioinformatics and Biomedical Technology
    May 2022
    190 pages
    ISBN:9781450396387
    DOI:10.1145/3543377

    Copyright © 2022 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 8 August 2022

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)30
    • Downloads (Last 6 weeks)5

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format