skip to main content
10.1145/3543507.3583516acmconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article
Artifacts Available / v1.1

ZTLS: A DNS-based Approach to Zero Round Trip Delay in TLS handshake

Published:30 April 2023Publication History

ABSTRACT

Establishing secure connections fast to end-users is crucial to online services. However, when a client sets up a TLS session with a server, the TLS handshake needs one round trip time (RTT) to negotiate a session key. Additionally, establishing a TLS session also requires a DNS lookup (e.g., the A record lookup to fetch the IP address of the server) and a TCP handshake. In this paper, we propose ZTLS to eliminate the 1-RTT latency for the TLS handshake by leveraging the DNS. In ZTLS, a server distributes TLS handshake-related data (i.e., Diffie-Hellman elements), dubbed Z-data, as DNS records. A ZTLS client can fetch Z-data by DNS lookups and derive a session key. With the session key, the client can send encrypted data along with its ClientHello, achieving 0-RTT. ZTLS supports incremental deployability on the current TLS-based infrastructure. Our prototype-based experiments show that ZTLS is 1-RTT faster than TLS in terms of the first response time.

References

  1. [n. d.]. BIND9. https://www.isc.org/bind/. Retrieved: 2022-10-12.Google ScholarGoogle Scholar
  2. [n. d.]. Google Transparency Report. https://transparencyreport.google.com/https/overview¿hl=en. Retrieved: 2022-10-12.Google ScholarGoogle Scholar
  3. [n. d.]. integrity - Glossary | CSRC - NIST Computer Security Resource Center. https://csrc.nist.gov/glossary/term/integrity. Retrieved: 2022-10-11.Google ScholarGoogle Scholar
  4. [n. d.]. OpenSSL. https://www.openssl.org/source/. Retrieved: 2022-10-12.Google ScholarGoogle Scholar
  5. [n. d.]. Rescorla, E.: TLS 1.3 (2015). http://web.stanford.edu/class/ee380/Abstracts/151118-slides.pdf. Retrieved: 2022-10-12.Google ScholarGoogle Scholar
  6. 1981. Internet Protocol. RFC 791. https://doi.org/10.17487/RFC0791Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. 1984. A Standard for the Transmission of IP Datagrams over Ethernet Networks. RFC 894. https://doi.org/10.17487/RFC0894Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. 1987. Domain names - implementation and specification. RFC 1035. https://doi.org/10.17487/RFC1035Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. 2015. About enabling QUIC in android. https://groups.google.com/a/chromium.org/g/proto-quic/c/4fjpJ7hUtgg. Retrieved: 2022-10-12.Google ScholarGoogle Scholar
  10. 2016. Building a faster and more secure web with TCP Fast Open, TLS False Start, and TLS 1.3. https://blogs.windows.com/msedgedev/2016/06/15/building-a-faster-and-more-secure-web-with-tcp-fast-open-tls-false-start-and-tls-1-3/. Retrieved: 2022-10-12).Google ScholarGoogle Scholar
  11. 2017. QUIC fallback to TCP scenario. https://groups.google.com/a/chromium.org/g/proto-quic/c/zo7–OQLQBo. Retrieved: 2022-10-12.Google ScholarGoogle Scholar
  12. 2018. Encrypt it or lose it: how encrypted SNI works. https://blog.cloudflare.com/encrypted-sni/. Retrieved: 2022-10-12.Google ScholarGoogle Scholar
  13. 2019. ISO8601. https://www.iso.org/standard/70907.html. Retrieved: 2022-10-12.Google ScholarGoogle Scholar
  14. Len Bass, Paul Clements, and Rick Kazman. 2012. Software Architecture in Practice (3rd ed.). Addison-Wesley Professional.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Philip Lewis Bohannon. 2017. Transport layer security latency mitigation.Google ScholarGoogle Scholar
  16. Guillaume Bonnoron, Damien Crémilleux, Sravani Teja Bulusu, Xiaoyang Zhu, and Guillaume Valadon. 2016. Survey and analysis of DNS infrastructures. Research Report. CNRS. https://hal.archives-ouvertes.fr/hal-01407640Google ScholarGoogle Scholar
  17. Ilker Nadi Bozkurt, Anthony Aguirre, Balakrishnan Chandrasekaran, P. Brighten Godfrey, Gregory Laughlin, Bruce Maggs, and Ankit Singla. 2017. Why Is the Internet so Slow¿!. In Passive and Active Measurement (PAM), Mohamed Ali Kaafar, Steve Uhlig, and Johanna Amann (Eds.). Springer International Publishing, Cham, 173–187.Google ScholarGoogle Scholar
  18. Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, and Michael Welzl. 2016. Reducing Internet Latency: A Survey of Techniques and Their Merits. IEEE Communications Surveys & Tutorials 18, 3 (2016), 2149–2196. https://doi.org/10.1109/COMST.2014.2375213Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ran Canetti, Shai Halevi, and Jonathan Katz. 2003. A Forward-Secure Public-Key Encryption Scheme. In Advances in Cryptology — EUROCRYPT 2003, Eli Biham (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 255–271.Google ScholarGoogle ScholarCross RefCross Ref
  20. Shan Chen, Samuel Jero, Matthew Jagielski, Alexandra Boldyreva, and Cristina Nita-Rotaru. 2019. Secure communication channel establishment: TLS 1.3 (over TCP fast open) vs. QUIC. In European Symposium on Research in Computer Security. Springer, 404–426.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Yuchung Cheng, Jerry Chu, Sivasankar Radhakrishnan, and Arvind Jain. 2014. TCP Fast Open. RFC 7413. https://doi.org/10.17487/RFC7413Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen, Russell Housley, and William Polk. 2008. Internet X. 509 public key infrastructure certificate and certificate revocation list (CRL) profile. RFC 5280.Google ScholarGoogle Scholar
  23. Joao da Silva Damas, Michael Graff, and Paul A. Vixie. 2013. Extension Mechanisms for DNS (EDNS(0)). RFC 6891. https://doi.org/10.17487/RFC6891Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246. https://doi.org/10.17487/RFC5246Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Danny Dolev and Andrew C. Yao. 1983. On the security of public key protocols. IEEE Transactions on information theory 29, 2 (1983), 198–208.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wesley Eddy. 2022. Transmission Control Protocol (TCP). RFC 9293. https://doi.org/10.17487/RFC9293Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pasi Eronen, Hannes Tschofenig, Hao Zhou, and Joseph A. Salowey. 2008. Transport Layer Security (TLS) Session Resumption without Server-Side State. RFC 5077. https://doi.org/10.17487/RFC5077Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Pouyan Fotouhi Tehrani, Eric Osterweil, Jochen H. Schiller, Thomas C. Schmidt, and Matthias Wählisch. 2021. Security of Alerting Authorities in the WWW: Measuring Namespaces, DNSSEC, and Web PKI. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for Computing Machinery, New York, NY, USA, 2709–2720. https://doi.org/10.1145/3442381.3450033Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Alessandro Ghedini. 2019. Even faster connection establishment with QUIC 0-RTT resumption. https://blog.cloudflare.com/even-faster-connection-establishment-with-quic-0-rtt-resumption/. Retrieved: 2022-10-12.Google ScholarGoogle Scholar
  30. Daniel Kahn Gillmor. 2016. Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security (TLS). RFC 7919. https://doi.org/10.17487/RFC7919Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Paul E. Hoffman and Jakob Schlyter. 2012. The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698. https://doi.org/10.17487/RFC6698Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and Secure Transport. RFC 9000. https://doi.org/10.17487/RFC9000Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Scott Kitterman. 2014. Sender Policy Framework (SPF) for Authorizing Use of Domains in Email, Version 1. RFC 7208. https://doi.org/10.17487/RFC7208Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Dr. Hugo Krawczyk and Pasi Eronen. 2010. HMAC-based Extract-and-Expand Key Derivation Function (HKDF). RFC 5869. https://doi.org/10.17487/RFC5869Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. H. Krawczyk, M. Bellare, and R. Canetti. 1997. RFC2104: HMAC: Keyed-Hashing for Message Authentication.Google ScholarGoogle Scholar
  36. Murray Kucherawy, Dave Crocker, and Tony Hansen. 2011. DomainKeys Identified Mail (DKIM) Signatures. RFC 6376. https://doi.org/10.17487/RFC6376Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Murray Kucherawy and Elizabeth Zwicky. 2015. Domain-based Message Authentication, Reporting, and Conformance (DMARC). RFC 7489. https://doi.org/10.17487/RFC7489Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Adam Langley. 2010. Transport Layer Security (TLS) Snap Start. Internet-Draft draft-agl-tls-snapstart-00. Internet Engineering Task Force. https://datatracker.ietf.org/doc/draft-agl-tls-snapstart/00/ Work in Progress.Google ScholarGoogle Scholar
  39. Adam Langley, Nagendra Modadugu, and Bodo Moeller. 2016. Transport Layer Security (TLS) False Start. RFC 7918. https://doi.org/10.17487/RFC7918Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Hyunwoo Lee, Doowon Kim, and Yonghwi Kwon. 2021. TLS 1.3 in Practice:How TLS 1.3 Contributes to the Internet. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for Computing Machinery, New York, NY, USA, 70–79. https://doi.org/10.1145/3442381.3450057Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. U. Lindqvist and E. Jonsson. 1997. How to systematically classify computer security intrusions. In Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat. No.97CB36097). 154–163. https://doi.org/10.1109/SECPRI.1997.601330Google ScholarGoogle ScholarCross RefCross Ref
  42. Steve Lohr. 2012. For Impatient Web Users, an Eye Blink Is Just Too Long to Wait. https://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html. Retrieved: 2022-10-12.Google ScholarGoogle Scholar
  43. Daniel Margolis, Mark Risher, Binu Ramakrishnan, Alex Brotman, and Janet Jones. 2018. SMTP MTA Strict Transport Security (MTA-STS). RFC 8461. https://doi.org/10.17487/RFC8461Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco Mellia, Maurizio Munafò, Konstantina Papagiannaki, and Peter Steenkiste. 2014. The Cost of the "S" in HTTPS. In Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and Technologies (Sydney, Australia) (CoNEXT ’14). Association for Computing Machinery, New York, NY, USA, 133–140. https://doi.org/10.1145/2674005.2674991Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. https://doi.org/10.17487/RFC8446Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. 2022. TLS Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-14. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-14 Work in Progress.Google ScholarGoogle Scholar
  47. Florentin Rochet, Emery Assogba, Maxime Piraux, Korian Edeline, Benoit Donnet, and Olivier Bonaventure. 2021. TCPLS: Modern Transport Services with TCP and TLS. In Proceedings of the 17th International Conference on Emerging Networking EXperiments and Technologies (Virtual Event, Germany) (CoNEXT ’21). Association for Computing Machinery, New York, NY, USA, 45–59. https://doi.org/10.1145/3485983.3494865Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. 2005. DNS Security Introduction and Requirements. RFC 4033. https://doi.org/10.17487/RFC4033Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Joseph A. Salowey, Hao Zhou, Hannes Tschofenig, and Pasi Eronen. 2006. Transport Layer Security (TLS) Session Resumption without Server-Side State. RFC 4507. https://doi.org/10.17487/RFC4507Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Ankit Singla, Balakrishnan Chandrasekaran, P. Brighten Godfrey, and Bruce Maggs. 2014. The Internet at the Speed of Light. In Proceedings of the 13th ACM Workshop on Hot Topics in Networks (Los Angeles, CA, USA) (HotNets-XIII). Association for Computing Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/2670518.2673876Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Sooel Son and Vitaly Shmatikov. 2010. The Hitchhiker’s Guide to DNS Cache Poisoning. In Security and Privacy in Communication Networks, Sushil Jajodia and Jianying Zhou (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 466–483.Google ScholarGoogle Scholar
  52. Drew Springall, Zakir Durumeric, and J. Alex Halderman. 2016. Measuring the Security Harm of TLS Crypto Shortcuts. In Proceedings of the 2016 Internet Measurement Conference (Santa Monica, California, USA) (IMC ’16). Association for Computing Machinery, New York, NY, USA, 33–47. https://doi.org/10.1145/2987443.2987480Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Nick Sullivan. 2017. Introducing Zero Round Trip Time Resumption. https://blog.cloudflare.com/introducing-0-rtt. Retrieved: 2022-10-12.Google ScholarGoogle Scholar
  54. Srikanth Sundaresan, Nazanin Magharei, Nick Feamster, and Renata Teixeira. 2012. Accelerating Last-Mile Web Performance with Popularity-Based Prefetching. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (Helsinki, Finland) (SIGCOMM ’12). Association for Computing Machinery, New York, NY, USA, 303–304. https://doi.org/10.1145/2342356.2342421Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Martin Thomson and Sean Turner. 2021. Using TLS to Secure QUIC. RFC 9001. https://doi.org/10.17487/RFC9001Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Filippo Valsorda. 2016. An overview of TLS 1.3 and Q&A. https://blog.cloudflare.com/tls-1-3-overview-and-q-and-a/. Retrieved: 2022-10-12.Google ScholarGoogle Scholar
  57. Zheng Wang. 2014. POSTER: On the Capability of DNS Cache Poisoning Attacks. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (Scottsdale, Arizona, USA) (CCS ’14). Association for Computing Machinery, New York, NY, USA, 1523–1525. https://doi.org/10.1145/2660267.2662363Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Paul Wouters, Hannes Tschofenig, John IETF Gilmore, Samuel Weiler, and Tero Kivinen. 2014. Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS). RFC 7250. https://doi.org/10.17487/RFC7250Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu, Neelakandan Manihatty-Bojan, Gianni Antichi, Marcin Wójcik, and Andrew W Moore. 2017. Where has my time gone¿. In International Conference on Passive and Active network measurement (PAM). Springer, 201–214.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. ZTLS: A DNS-based Approach to Zero Round Trip Delay in TLS handshake

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        WWW '23: Proceedings of the ACM Web Conference 2023
        April 2023
        4293 pages
        ISBN:9781450394161
        DOI:10.1145/3543507

        Copyright © 2023 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 30 April 2023

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate1,899of8,196submissions,23%

        Upcoming Conference

        WWW '24
        The ACM Web Conference 2024
        May 13 - 17, 2024
        Singapore , Singapore
      • Article Metrics

        • Downloads (Last 12 months)312
        • Downloads (Last 6 weeks)19

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format