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We propose a novel version of the GPU-oriented massively parallel locally-ordered clustering (PLOC) algorithm
for constructing bounding volume hierarchies (BVHs). Our method focuses on removing the weaknesses of

the original approach by simplifying and fusing different phases, while replacing most performance critical

parts by novel and more efficient algorithms. This combination allows for outperforming the original approach

by a factor of 1.9 − 2.3×.
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1 INTRODUCTION
The bounding volume hierarchy (BVH) is one of the most popular acceleration structures in

rendering, used on both CPU and GPU. Its most common form in the context of ray tracing

is a binary BVH, where each node has two children (i.e. branching factor of two) and bounding

volumes are axis-aligned bounding boxes (AABBs). In the context of interactive/real-time workflows

reducing BVH construction times has become more and more important as BVHs need to be rebuild

per frame to support dynamic content. In general, BVH construction algorithms for ray tracing can

be categorized in top-down, bottom-up and insertion-based approaches. Bottom-up approaches

have been very popular on GPU architectures, as their task distribution scheme is more suited to

the GPU’s massively parallel compute architecture. However, implementing an efficient and high

quality bottom-up BVH builder on a given GPU architecture is still an issue [Meister et al. 2021].

In this paper, we propose a new version of the parallel locally-ordered clustering (PLOC) approach
by Meister et al. [2018a], which is considered one of the fastest high-quality bottom-up BVH

construction algorithms for GPUs. We show that by carefully simplifying and fusing different

phases of the approach and replacing the time-critical ones with novel algorithms, we outperform

prior work by a factor of 1.9 − 2.3×. Using the publicly available implementation [Meister 2018] as
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a baseline, our version does not only double performance, but also reduce memory requirements

during construction.

In the following we will refer to Meister’s original implementation as PLOC and to our new

approach as PLOC++. With respect to the GPU programming model we will use the general OpenCL

terms, e.g., an OpenCL work group corresponds to a CUDA block, an OpenCL computing unit to a

CUDA streaming multiprocessor, an OpenCL work item to a CUDA thread, etc.

2 RELATEDWORK
Various approaches for BVH construction, in particular in the context of ray tracing, have been

proposed over the years. Most state-of-the-art BVH construction algorithms that focus on providing

high-quality BVH for fast ray traversal performance minimize a cost function known as surface
area heuristic (SAH) [Aila et al. 2013; Goldsmith and Salmon 1987]. Recent top-down BVH con-

struction approaches have seen improvements in construction time while maintaining high SAH

quality, either by improved triangle splitting [Ganestam and Doggett 2016] or using an auxiliary

LBVH [Lauterbach et al. 2009] for progressive tree refinement [Hendrich et al. 2017]. Further work

on LBVH can be found in [Vinkler et al. 2017]. Bottom-up builders, instead, aggregate primitives

starting from the leaves until the full tree is built; the required nearest neighbor lookup can be

accelerated by kd-trees [Walter et al. 2008] or by using a Morton curve [Gu et al. 2013; Meister

and Bittner 2018a]. Insertion-based methods work by adding primitives to an incremental data

structure [Bittner et al. 2013], and have been recently parallelized on GPUs [Meister and Bittner

2018b]. For a detailed and comprehensive overview on top-down, bottom-up, and insertion-based

approaches we refer to the latest state-of-the-art report on BVH construction algorithms [Meister

et al. 2021]. Our work focuses exclusively on the parallel locally-ordered clustering approach for

bottom-up BVH construction on GPUs [Meister and Bittner 2018a]. Besides the original GPU

implementation, a dedicated hardware implementation has been proposed [Viitanen et al. 2018].

3 ORIGINAL PLOC
The original PLOC approach [Meister and Bittner 2018a] is an iterative algorithm using agglomer-

ative clustering based on Morton curve-ordered [Lauterbach et al. 2009] cluster representatives.

Cluster representatives are scene primitives’ AABBs and inner BVH nodes. Besides an initial pre-

processing step, each iteration consists of three phases: range-based approximate nearest neighbor

search, locally ordered clustering to (implicitly) build a binary BVH, and a cluster representative

compaction phase (see Figure 1). In the following we will illustrate the different phases of the

original algorithm.

3.1 PLOC Pre-processing
The PLOC approach starts with a three step pre-processing phase: initialization of initial cluster

representatives using AABBs of scene primitives, creation of centroid-based Morton codes from

those and their sorting. The pre-processing phase is a prerequisite for the iterative BVH build

process. Besides the cluster representatives, additional data is needed for the binary BVH nodes, the

nearest neighbor information and the binary valid/invalid state per cluster representative, as well

as auxiliary data buffers for prefix sum computation and compaction. Efficiently compacting cluster

representatives in parallel requires double buffering, which is costly in terms of memory bandwidth

and footprint. The publicly available implementation of PLOC avoids this bottleneck by introducing

an additional indirection to the array of cluster representatives through using double-buffered index

arrays (32-bit integer indices). All read/write accesses to the array of cluster representatives are

done through the index arrays. Since both the initial cluster representatives (set to scene primitives’

AABBs) and inner BVH nodes are considered cluster representatives during the build process, the
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Fig. 1. Three PLOC iterations (left) for an array of six primitives. Each iteration consists of three phases:
approximate nearest neighbor search among clusters, merging of cluster pairs, and cluster compaction
(removing invalid clusters). The merging of clusters in each iteration creates an implicit binary BVH (right).
The second child of the merged cluster pair is set to invalid and the compaction phase removes it before
starting the next iteration. The algorithm terminates when only a single cluster representative remains.

former are simply treated as BVH leaf nodes, hence the integer indices point either to BVH leaves

or inner nodes.

3.2 PLOC Iteration
Approximate Nearest Neighbor Search. Each PLOC iteration starts with a range-based approximate

nearest neighbor search for each cluster representative. This search relies on the Morton-ordered

cluster representatives, taking a predefined search radius into account. Given a search radius 𝑅

and position 𝑖 , the search scans the interval range ⟨𝑖 − 𝑅, 𝑖 + 𝑅⟩ of representatives and determines

the element that minimizes the chosen distance function (area of merged bounding boxes). The

position of the element with lowest distance is saved as the nearest neighbor for position 𝑖 . To

improve the performance of the nearest neighbor search, the most expensive part of each iteration,

a subset of cluster representatives are loaded from global memory into shared local memory first.

This saves memory bandwidth and reduces access latency during the nearest neighbor search.

Locally Ordered Clustering. The second phase performs locally ordered clustering: If two repre-

sentatives mutually agree on being their nearest neighbors (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝑖]] = 𝑖), the pair
will be merged and a new binary BVH node is created. The new BVH node automatically becomes

a new cluster representative and it overrides one of the two input representatives in the index

array, typically the one with the smaller index (𝑖 < 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝑖]). The one with the larger index,

instead, is no longer needed and is marked as invalid (using a separate valid/invalid state array).

Cluster Compaction. Invalid cluster representatives in the index array will be removed in the final

compaction phase, which employs a prefix sum computation over all valid cluster representatives.
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3.3 PLOC Bottlenecks
In terms of performance, Meister et al. [2018a] reports that PLOC is dominated by three factors:

cost of nearest neighbor search, overhead of five kernel launches per iteration (one each for

nearest neighbor search and merging and three for compaction) combined with a large number of

iterations, and memory operations associated with auxiliary arrays (valid/invalid state, prefix sum,

compaction). In the following we will propose a new version which addresses these shortcomings.

4 PLOC++
In the following we will illustrate our novel version of the PLOC algorithm. We start with the

chunk-based nearest neighbor search (see Section 4.1), which allows for removing all auxiliary data

buffers and merging the nearest neighbor search, the BVH construction phase and the prefix sum

computation into a single kernel launch (see Section 4.2). Next, we reduce the complexity of the

nearest neighbor search (see Section 4.3) itself, and present a straightforward path for efficiently

handling the construction of the top of the binary BVH (see Section 4.4). Finally, we present a

simple extension (see Section 4.5) which removes most of the kernel launch overhead altogether,

while constructing a slightly different BVH.

4.1 Independent Chunk-based Approximate Nearest Neighbor Search
Our first modification to PLOC is to perform the nearest neighbor search for a chunk of cluster

representatives locally within a work group and independently from other chunks. The nearest

neighbor search for a given chunk can be performed independently if a small number of additional

representatives of the neighboring left and right chunks (see Figure 2) are included in the search.

Given a search radius of𝑅, 2×𝑅 representatives of the end of the left chunk and 2×𝑅 of the beginning

of the right chunk have to be included (4×𝑅 total). Similar to PLOC, all required representatives for
a given cluster, including additional border elements are loaded from global memory into shared

local memory before the nearest neighbor search starts. The size of a chunk is therefore driven by

the available shared local memory per work group (see Section 5). In general, it should be as large

as possible to amortize the fetches of the additional border elements.

4.2 Merging Phases
The chunk-based nearest neighbor search (see Section 4.1) only requires cluster representatives as

input. The output of the search for 𝑐ℎ𝑢𝑛𝑘𝑖 is a similarly sized array of nearest neighbor indices.

These indices are all the data required to merge cluster representatives and create internal BVH

nodes within the given chunk. It is important to note that 𝑐ℎ𝑢𝑛𝑘𝑖 can only merge representative

𝑋 with its nearest neighbor if three conditions hold (see Figure 2): 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝑋 ]] = 𝑋 ,
𝑋 < 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝑋 ] and 𝑋 ∈ 𝑐ℎ𝑢𝑛𝑘𝑖 . These rules allow for combining the nearest neighbor search

and the merging of cluster representatives/BVH construction phase into a single first phase, which
requires only a single kernel launch. As the nearest neighbor indices depend only on the chunk of

representatives, they do not have to be stored in global memory anymore but instead can be kept

in shared local memory.

On a successful merge, the index of the new representative (based on the new inner BVH node)

overrides the previous one with the smallest index, while the other is marked as invalid. This

update and invalidation output is written to the second array of representative indices. Non-merged

representatives are simply copied from the first to the second array without any modification. The

final compaction phase consumes the second array as input and writes the compacted sequence

(removing invalid entries) into the first array of indices.
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Fig. 2. Given a search radius 𝑅 (in this example set to 2), the nearest neighbor search of a 𝑐ℎ𝑢𝑛𝑘𝑖 of 𝑁
cluster representatives (green middle boxes) can be processed independently when including 2 × 𝑅 additional
representatives on the left and right side of the chunk (4 × 𝑅 total, orange and yellow boxes), which are small
parts of the end/beginning of the neighboring left/right chunk 𝑖−1 and 𝑖+1: if𝐴 (green) determined 𝐵 (yellow) as
nearest neighbor, we need to make sure that the nearest neighbor of 𝐵 is𝐴 as well to successfully merge them.
This requires scanning 𝑅 additional elements to the left and right of 𝐵, e.g., element𝐶 (orange). It is important
to note that cluster representative 𝑋 will only be merged with 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝑋 ], if 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝑋 ]] = 𝑋 ,
𝑋 < 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝑋 ] and 𝑋 ∈ 𝑐ℎ𝑢𝑛𝑘𝑖 (green middle boxes). The latter ensures merging consistency between
neighboring chunks, as only a 𝑐ℎ𝑢𝑛𝑘𝑖 is allowed to merge the pair. In the example, assuming 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝐴] =
𝐵 ∧ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝐵] = 𝐴, 𝑐ℎ𝑢𝑛𝑘𝑖 will NOT merge the pair but 𝑐ℎ𝑢𝑛𝑘𝑖−1 will as 𝐵 has the smaller index and
𝐵 ∈ 𝑐ℎ𝑢𝑛𝑘𝑖−1. Assuming 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝐷] = 𝐸 ∧ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝐸] = 𝐷 , 𝑐ℎ𝑢𝑛𝑘𝑖 will merge this pair because 𝐷 has the
smaller index and 𝐷 ∈ 𝑐ℎ𝑢𝑛𝑘𝑖 .

Most of the prefix sum computation required for the compaction phase can be done within the

first phase as well. Let 𝐶 be the number of chunks and 𝑃 be the minimal number of work groups

which are needed to fully utilize the GPU. Chunks are now equally distributed over work groups,

such that each gets a single range of 𝐶/𝑃 chunks. At the end of the first phase, each work group

computes the number of valid cluster representatives within its assigned range of chunks, and saves

the data into a small auxiliary array in global memory. This array needs only 𝑃 entries and it can, for

example, be held in the radix sort’s histogram buffer. After the first phase is done, the compaction

phase uses the same range of 𝐶/𝑃 chunks per work group assignment and computes a prefix sum

over just 𝑃 entries at startup. This fixed mapping of chunks to work groups avoids a separate kernel

launch and the associated memory buffers to perform a global prefix sum computation as in the

original PLOC approach.

The merging of phases in PLOC++ brings the number of kernel launches per iteration down to

two, which is significantly less compared to the five kernel launches of PLOC. Also, no additional

global memory is required for storing nearest neighbors, prefix sums, and cluster representatives’

valid/invalid state.

4.3 Reducing Nearest Neighbor Search Complexity
Of the two remaining kernels (see Section 4.2), the combined nearest neighbor search and BVH

construction kernel is 10× more costly than the simple compaction kernel. The nearest neighbor

search step itself is the dominating factor, i.e. given 𝑁 cluster representatives and a search radius of

𝑅, the search complexity is 𝑁 × 𝑅 × 2. In the following we will show how to reduce the complexity

to 𝑁 × 𝑅, cutting the cost in half.

Our algorithm relies on the commutative property of the distance function - surface area of the

merged bounding boxes - with 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐶𝑖 ,𝐶 𝑗 ) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐶 𝑗 ,𝐶𝑖 ). That means 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐶𝑖 ,𝐶 𝑗 )
contributes to the nearest neighbor search for 𝐶𝑖 and 𝐶 𝑗 . However, efficiently exploiting this

commutative property is not straightforward as the distance computations happen in parallel and

influence each others’ nearest neighbor search.
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Algorithm 1 Our new nearest neighbor search: first the nearest neighbor array 𝑁𝑖 is initialized

to a default value; next, for each cluster representative at position 𝑖 , 𝑆𝐸𝐴𝑅𝐶𝐻_𝑅𝐴𝐷𝐼𝑈𝑆 elements

are scanned to the right and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐶𝑖 ,𝐶𝑖+𝑟 ) is computed for cluster 𝐶𝑖 and 𝐶𝑖+𝑟 . The distance in
32-bit single precision floating point format is now treated as an unsigned integer, left-shifted by

one (distance always positive) and the lowest bits are masked out to store the relative offset to the

nearest neighbor. This final value is now used to atomically update the nearest neighbor entries at

𝑁𝑖 and 𝑁𝑖+𝑟 . For a search radius of 16 only the four lowest bits of floating point mantissa are lost.

function encodeRelativeOffset(𝐼𝐷, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 )

offset← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 − 𝐼𝐷
return (𝑎𝑏𝑠 (offset) ≪ 1) ∨ (offset ≫ 31)

end function
𝐶 ← [𝐶0, ..,𝐶𝑛−1]
𝑁 ← [𝑁0, .., 𝑁𝑛−1]
𝑆𝐸𝐴𝑅𝐶𝐻_𝑅𝐴𝐷𝐼𝑈𝑆_𝑆𝐻𝐼𝐹𝑇 ← 4 ⊲ search radius of 16 = 2

4

𝑆𝐸𝐴𝑅𝐶𝐻_𝑅𝐴𝐷𝐼𝑈𝑆 ← 1 ≪ 𝑆𝐸𝐴𝑅𝐶𝐻_𝑅𝐴𝐷𝐼𝑈𝑆_𝑆𝐻𝐼𝐹𝑇

𝐸𝑁𝐶𝑂𝐷𝐸_𝑀𝐴𝑆𝐾 ← ¬(1 ≪ (𝑆𝐸𝐴𝑅𝐶𝐻_𝑅𝐴𝐷𝐼𝑈𝑆_𝑆𝐻𝐼𝐹𝑇 + 1) − 1)
for 𝑖 ← 0 to 𝑛 − 1 in parallel do

𝑁𝑖 ← 𝑀𝐴𝑋_𝑈 𝐼𝑁𝑇

end for
Barrier()

for 𝑖 ← 0 to 𝑛 − 1 in parallel do
𝑚𝑖𝑛_𝑎𝑟𝑒𝑎_𝑖𝑛𝑑𝑒𝑥 ← 𝑀𝐴𝑋_𝑈 𝐼𝑁𝑇

for 𝑟 ← 1 to 𝑆𝐸𝐴𝑅𝐶𝐻_𝑅𝐴𝐷𝐼𝑈𝑆 do
𝑎𝑟𝑒𝑎 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐶𝑖 ,𝐶𝑖+𝑟 )
𝑎𝑟𝑒𝑎_𝑖 ← (𝑏𝑖𝑡𝑐𝑎𝑠𝑡 <𝑢𝑖𝑛𝑡 > (𝑎𝑟𝑒𝑎) ≪ 1) ∧ 𝐸𝑁𝐶𝑂𝐷𝐸_𝑀𝐴𝑆𝐾
𝑒𝑛𝑐𝑜𝑑𝑒0← 𝑎𝑟𝑒𝑎_𝑖 ∨ encodeRelativeOffset(𝑖, 𝑖 + 𝑟 )
𝑒𝑛𝑐𝑜𝑑𝑒1← 𝑎𝑟𝑒𝑎_𝑖 ∨ encodeRelativeOffset(𝑖 + 𝑟, 𝑖)
𝑚𝑖𝑛_𝑎𝑟𝑒𝑎_𝑖𝑛𝑑𝑒𝑥 ←𝑚𝑖𝑛(𝑚𝑖𝑛_𝑎𝑟𝑒𝑎_𝑖𝑛𝑑𝑒𝑥, 𝑒𝑛𝑐𝑜𝑑𝑒0)
𝑎𝑡𝑜𝑚𝑖𝑐_𝑚𝑖𝑛(𝑁𝑖+𝑟 , 𝑒𝑛𝑐𝑜𝑑𝑒1)

end for
𝑎𝑡𝑜𝑚𝑖𝑐_𝑚𝑖𝑛(𝑁𝑖 ,𝑚𝑖𝑛_𝑎𝑟𝑒𝑎_𝑖𝑛𝑑𝑒𝑥)

end for

We address this issue by first initializing the nearest neighbor index array per chunk (stored

in shared local memory) to an invalid default state (maximum unsigned integer value). Next,

for each cluster representative 𝐶 𝑗 we iterate over the interval ⟨ 𝑗 + 1, 𝑗 + 𝑅⟩ and compute the

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐶 𝑗 ,𝐶𝑘 ), 𝑘 ∈ ⟨ 𝑗 + 1, 𝑗 +𝑅⟩, which is then interpreted as an unsigned integer value (distance

is always positive), left-shifted by one and the lowest bits are masked out to encode the relative

position of its nearest neighbor (see Algorithm 1). This unsigned integer value is now used to

atomically update the nearest neighbor entry at position 𝑗 and 𝑘 . The update is done by using a

32-bit atomic min operation. If the underlying GPU architecture supports efficient 64-bit atomics to

shared local memory, the relative encoding is not required, as the 32-bit distance value and the

32-bit index can be encoded into the upper and lower parts of a 64-bit unsigned integer.
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4.4 Efficient Construction of Upper BVH Levels
At the top of the BVH tree only a few cluster representatives remain active, the GPU becomes

therefore heavily underutilized and the kernel launch overhead becomes even more relevant as the

actual computational cost becomes smaller and smaller. A way of avoiding these kernel launches

is to combine the two remaining kernels from Section 4.2 into a single kernel by restricting the

execution to a single work group. The single work group allows for using work group barriers to

synchronize between the merged nearest neighbor / BVH construction and compaction phases.

This makes it now possible to perform the main iteration loop inside the kernel using work group

barriers for synchronization. This removes the previous kernel launch overhead for the remaining

iterations completely. On the host side, the switch to the single work group kernel is done if the

number of active cluster representatives is less than a predefined threshold. For our implementation

(see Section 5) a switch threshold of 4 − 8𝐾 primitives worked well for all tested example scenes.

4.5 Two-Level Hierarchy Extraction (PLOC++ Two-Level)
The same idea of letting PLOC++ iterate locally within a work group using work group barriers

for synchronization (see Section 4.4) can be applied to remove most of the kernel launch overhead

for the entire iterative process. By identifying independent ranges of cluster representatives and

letting each range be processed by a single work group, only a single kernel launch is required

to start enough work groups to process all independent ranges. After this kernel launch, each

range has its BVH built and a top-level BVH over these range BVHs needs to be built. The top-

level BVH construction needs a second kernel launch. This two-level approach, which we call

PLOC++ Two-Level, is similar to other implicit two-level hierarchy extraction and BVH construction

approaches [Meister et al. 2021]. It is important to note that the implicit two-level approach generates

a different BVH compared to the full-iterative version of PLOC/PLOC++, as the nearest neighbor
search is limited to the cluster representatives within the independent range (see Section 5).

The partitioning of cluster representatives into independent ranges can be efficiently generated

by using existing sorted Morton codes which define an implicit binary tree. Fully utilizing the GPU

requires the number of independent ranges to be equal or greater than the minimal number of

work groups required to utilize all computing units. In order to quickly extract a sufficient number

of independent ranges, the (implicit) Morton binary tree is traversed top-down in a breadth-first

manner. The root node of the Morton binary tree is associated with the full range over all cluster

representatives, and the two children of each node split the given range into two independent

sub-ranges. This splitting process tries to split the largest ranges first and continues until the total

number of ranges reaches a predefined threshold.

Letting a work group build the BVH per range up to the root node is sub-optimal in terms of

BVH quality as there can be large overlap between the root nodes’ bounding boxes, leading to a

lower quality top-level BVH. A better approach is to stop the iterative process earlier, i.e. if the

number of active cluster representatives has reached a given threshold. This gives the top-level

BVH build a better chance to reduce overlap, thereby increasing BVH quality. We have determined

a stopping threshold similar to the nearest neighbor search radius to provide the biggest gain in

top-level BVH quality (see Section 5.2).

4.6 Memory Consumption
The merging of different phases into a single kernel launch (see Section 4.2) made the explicit

arrays for storing valid/invalid state per cluster representative and prefix sum data obsolete. For

𝑁 scene primitives, PLOC++ therefore needs 𝑁 × 32 bytes for the initial cluster representatives,
𝑁 × 32 bytes for the binary BVH nodes, and 2 × 𝑁 × 4 bytes for integer index arrays referencing

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 31. Publication date: July 2022.



31:8 Carsten Benthin, Radoslaw Drabinski, Lorenzo Tessari, and Addis Dittebrandt

cluster representatives, which yields a total of 𝑁 × 72 bytes. The temporary memory for storing

and sorting Morton codes is aliased with currently unused buffers, for example the BVH node

memory which is not needed during the pre-processing phase. PLOC++’s reduced prefix sum

computation and PLOC++ Two-Level’s independent ranges need a small additional amount of

memory of approximately 𝑃 × 2 × 4 bytes, where 𝑃 is the minimal number of work groups needed

to fully utilize the GPU. This small amount of memory is aliased with unused buffers as well.

4.7 Faster Conversions in Corner Cases
In terms of efficiency, PLOC’s original version of nearest neighbor search breaks down if the cluster

representatives’ bounding boxes are exactly the same. This corner case of lots of bounding boxes

being located at the exact same position and having the same size occasionally happens in real-world

content, in particular in scenes where many point primitives (particles) start at the same initial

position. In this case, the nearest neighbor search for position 𝑖 will determine the first element

tested, which will always be at position 𝑖 − 1, if the scan starts to the left, as the nearest neighbor.

Subsequently scanned elements won’t update the position as the distance function won’t produce a

smaller result, hence the condition 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [𝑋 ]] = 𝑋 won’t be fulfilled for any element

except for the very first, where no element to the left exists (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [0] = 1, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 [1] = 0).

This causes the nearest neighbor search to only find a single pair per iteration, resulting in linear

complexity in the number of equal bounding boxes.

We address this issue by initializing the local nearest neighbor array (see Section 4.3) for position

𝑖 to 𝑖 + 1 if 𝑖 is even and to 𝑖 − 1 if 𝑖 is odd. Neighboring elements with equal bounding boxes will

therefore be directly merged, resulting in logarithmic build complexity for the corner case.

5 RESULTS AND DISCUSSION
For our evaluation we implemented both PLOC and our PLOC++ algorithm in oneAPI’s DPC++

language [Intel Corporation 2021] and run on a pre-production Intel® Alchemist-G10 GPU [Intel

Corporation 2022] (32 Xe cores, 16GB GDDR6 memory, 256-bit memory interface)
1
using Ubuntu

20.04 Linux. The maximum work items in a work group is 1024, and each work group can use

up to 64K of shared local memory, while the nearest neighbor search and hierarchy construction

phase only requires approximately 32K. Fully saturating the 32 Xe cores requires 64 work groups

with 1024 work items each. Both implementations have been extensively optimized with respect to

the underlying GPU architecture. 64-bit Morton codes (64-bit keys + 32-bit index = 96-bit element

size) are used in both approaches as they provide higher quality for the nearest neighbor search

in the more complex scenes. The Morton codes are sorted by an optimized LSB-based radix sort

which requires eight iterations (8-bit radix) to sort the 64-bit keys. Instead of performing eight

sorting passes on the full 96-bit sorting element, we split the sorting into two blocks of four passes,

where only 32-bit keys are used. This reduces the sorting element size to 64-bit. We initialize the

32-bit key of the 64-bit element with the lower 32 bits of the 64-bit key. Before the second block, we

replace the 32-bit key with the upper 32-bits of the 64-bit key. This 2 × 32-bit key sorting approach

allows for keeping the element size during sorting iterations to 64-bit (8 bytes) instead of 96-bit (12

bytes), which saves memory and cache bandwidth and therefore reduces sorting time by up to 20%.

For BVH construction speed and ray tracing performance comparisons, we used a selection of the

freely available models from Morgan McGuire’s graphics archive [McGuire 2017]. In the following

we will focus on presenting relative BVH build performance against the original PLOC algorithm

running on the same hardware platform. For absolute performance numbers see Appendix A.

1
Performance varies by use, configuration and other factors. Learn more on the https://edc.intel.com/content/www/us/en/

products/performance/benchmarks/overview/ Performance Index site.
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Fig. 3. Relative kernel run-times measured on the device (excluding kernel launch overhead). PLOC++’s fused
nearest neighbor search - merge - BVH construction kernel (blue) requires just approximately half the time of
PLOC’s previous two corresponding kernels (orange, grey). PLOC++’s single work group kernel (dark blue),
constructing the upper levels of the BVH, and the simplified compaction kernel require just a fraction of the
total run-time. The iterative kernels have now similar costs as the pre-processing kernels (Sorting+Rest).

5.1 BVH Build Time
For PLOC and PLOC++, a search radius of 16 was set as default, as it provides a good trade-off in

terms of BVH quality and construction speed. The chunk size for the merged nearest neighbor

search and BVH construction kernel is set to 1024 − 4 × 16 = 960 (1024 being the largest possible

work group size). The 4× 16 = 64 elements are due to 2× 16 additional elements at the left and right

borders of the chunk, which are needed to allow independent chunk processing (see Section 4.1).

The switching threshold for the single work group construction kernel (see Section 4.4) was set to

8192. This keeps the number of required iterations most of the time below 50, compared to 70− 180
without the switch. For the PLOC++ Two-Level approach, the Morton code-based range extraction

was set to extract a number of ranges which is two times 64, 64 being the minimal number of

work groups required to fully utilize the GPU. In general, the output of the BVH builder is an

uncompressed binary BVH which is, in a final step, converted into a specific layout consumed by

hardware ray tracing units. This conversion step is independent from the underlying BVH build

algorithm and therefore omitted from the performance measurements.

All performance measurements include all pre-processing steps such as scene bounding box

computation, 64-bit Morton code generation, sorting of Morton codes, cluster initialization, etc.

With respect to host vs. device timings, Meister et al. [2018a] report an average host-device overhead

of 1.5× for PLOC. The overhead is caused by the per-kernel launch overhead and the number of

kernel launches required. We measured the average host vs. device overhead on the Intel GPU to be

on average 1.6×. The small difference is likely due to differences in the underlying GPU architecture,

software layer and different kernel run-time costs. Figure 3 shows relative kernel run-times using

device timings. PLOC++’s fusing and simplification of phases shows a significant costs reduction

compared to PLOC, leading to an almost balanced cost between iterative and pre-processing kernels.

In the following, we will use host timings for all comparisons. Because of requiring just two

kernel launches per iteration and using the single work group construction kernel for building the

top of the BVH, PLOC++ reduces the kernel launch overhead to an average of 1.4× (vs 1.6×), and
even less than 1.1× for PLOC++ Two-Level. The reduced host vs. device overhead in combination

with the faster chunk-based nearest neighbor search result in a total BVH construction speedup of

1.9 − 2.3× compared to PLOC (see Figure 4), while PLOC++ Two-Level even reaches a speedup of

2 − 3×. PLOC++ Two-Level provides a speedup of 10 − 30% over PLOC++.
In comparison to an optimized 4D LBVH builder [Vinkler et al. 2017] also based on 64-bit Morton

codes (see Figure 4), one of the fastest BVH builders available, PLOC achieves a relative BVH build

performance of 0.24 − 0.46×, while PLOC++ reaches 0.56 − 0.92× and PLOC++ Two-Level even
0.71 − 1.03×. An interesting outlier is the Rungholt scene which requires the lowest number of

iterations of all scenes and therefore has the fastest PLOC++ BVH build performance. For this scene,

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 31. Publication date: July 2022.



31:10 Carsten Benthin, Radoslaw Drabinski, Lorenzo Tessari, and Addis Dittebrandt

Fig. 4. The faster nearest neighbor search, the reduced number of kernel launches per iteration, and the single
work group construction kernel allow PLOC++ to outperform PLOC by 1.9 − 2.3×. The PLOC++-Two-Level
extension, which relies on extracting an implicit two-level hierarchy from the Morton code, further reduces
the kernel launch overhead, increasing the speedup factor of PLOC++ over PLOC to 2 − 3×. In comparison
to a LBVH builder, PLOC achieves just 0.23 − 0.4× of the LBVH build performance, while PLOC++ reaches
0.51 − 0.86× and PLOC++-Two-Level even 0.66 − 0.97×.

PLOC++ Two-Level is slightly faster than the 4D LBVH builder, while for Bistro the number of

required iterations is the highest, leading to the lowest BVH build performance. This makes PLOC++
and in particular PLOC++ Two-Level a potential LBVH builder alternative as they provide on average

a 5 − 18% better ray tracing performance (see Section 5.2). In case BVH build performance is more

important than BVH quality, a smaller nearest neighbor search radius could be used (see Section 5.3)

which is likely to affect quality but increase build performance of all PLOC-based approaches.

5.2 BVHQuality and Ray Tracing Performance
For comparing BVH quality and ray tracing performance during rendering, a simplified two bounce

diffuse path tracer was used. At each intersection point, 64 random rays are cast, ensuring a high

incoherence in the ray distribution. Our comparison baseline is a high-quality CPU-based binned-

SAH BVH builder (16 bins per dimension). Figure 5 shows that the ray tracing performance (ray

traversal and triangle intersection are fully hardware accelerated on the Intel® Alchemist-G10 GPU)

is within a 0.9 − 1.05× range for both PLOC++ and PLOC++ Two-Level , while the SAH quality is

within a 0.9−1.09× range. For our example scenes, BVH quality and actual ray tracing performance

roughly correlate. Interestingly, the range restriction of the nearest neighbor search for PLOC++
Two-Level and its impact on BVH structure does not affect the ray tracing performance much, as

the difference compared to PLOC++ is just a few percent.

For improving the quality of PLOC++ Two-Level, we stop the iterative BVH build process per

range if the number of active cluster representatives is equal or less than the search radius (see

Section 4.5) to allow for reducing the overlap in the top-level BVH construction phase. The following

Fig. 5. Relative ray tracing performance for incoherent rays compared to a high-quality binned-SAH CPU
BVH builder. PLOC++ and PLOC++-Two-Level are within a 0.87−1.03× range, while LBVH is with 0.62−0.95×.
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table shows the ray tracing performance benefit when using a search radius and stopping criteria

of 16 compared to building the BVH per range until a single root node remains.

Scene Crown San Miguel Bistro Powerplant Rungbolt Hairball

Speedup 1% 2% 2% 9% 0% 7%

The biggest gains are visible for the Powerplant and Hairball scene, while the performance of

the other scenes are largely unaffected. The likely reason for the gains in these two scenes is the

increased overlap due to long and thin diagonal geometry.

5.3 Search Radius Impact
Increasing the search radius allows the nearest neighbor search to scan a larger window of potential

candidates at the expense of making the search itself more expensive. Figure 6 shows relative BVH

build and ray tracing performance with varying search radius. Increasing the search radius by 8

reduces the total build time by 5-10%. In terms of ray tracing performance, scenes with a large

variation in triangle sizes and shapes, i.e. the Powerplant scene, benefit from a search radius of 16

or larger. At the same time a larger search radius than 16 does not necessarily mean better BVH

quality and higher ray tracing performance, as for some scenes the performance slightly reduces in

this case. Our chosen search radius of 16 seems to provide a sweet spot with respect to BVH build

and ray tracing performance.

6 CONCLUSION AND FUTUREWORK
We proposed PLOC++, a novel version of the PLOC BVH construction algorithm, which is more

efficient in terms of computation and memory requirements. The faster chunk-based nearest

neighbor search, the fusion of kernels, and the single work group construction kernel allow PLOC++
to outperform the original implementation by up to 2.3×, while PLOC++ Two-Level even increases

the speedup up to 3×. We believe that our algorithm should directly be applicable to other GPUs,

as most major GPU architectures both support large workgroups of 1024 work items and at least

32K of shared local memory per work group. Additionally, the implementation does not rely on

any Intel specific hardware extension, hence a port to other programming environments should

be straight forward. In the future we would like to explore further optimizations, e.g., replacing

the caching of cluster representatives into shared local memory by loading the data into registers

once and relying on register swizzles to exchange data across work items. Additionally, memory

bandwidth could be saved by quantifying the clusters’ bounding boxes and, in case of Morton

code-extracted range partitions, the BVH quality could be improved by applying re-braiding based

techniques [Benthin et al. 2017] to reduce spatial overlap. Another interesting approach would be

Fig. 6. Relative build time (left) and ray tracing performance (right) with varying search radius (normalized
to performance using a search radius of 16). Increasing the search radius by 8 reduces build performance by
5-10%. Search radius of 8 reduces the ray tracing performance by 14% for the Powerplant scene, while a larger
radius slightly increases performance for some scenes while reducing it for others.
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to use PLOC++ to improve quality of an already existing binary tree (e.g. Morton code-based) by

rebuilding it in a single bottom-up pass. This would restrict the nearest neighbor search to the

elements in a given sub-tree which will likely affect BVH quality. In terms of hardware acceleration,

the implementation could directly benefit from offloading the merged nearest neighbor search

and hierarchy construction phase to a dedicated hardware unit, similar to [Viitanen et al. 2018].

However, as sorting the Morton codes is starting to have similar run-time cost than the merged

phase, a dedicated hardware unit for sorting key-value integer pairs would be beneficial as well.
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A APPENDIX
Absolute BVH build timings on a pre-production Intel Alchemist-G10 GPU with 32 Xe cores.

2

Scene Crown San Miguel Bistro Powerplant Rungbolt Hairball

Triangles (M) 4.8 10.5 2.8 12.4 6.7 2.9

PLOC

Host Build Perf (Mprims/s) 100.8 104.6 71.2 159.9 156.3 84.3

PLOC++

Host (ms) 23.0 42.1 17.0 40.2 21.4 14.9

Device (ms) 16.1 33.8 11.2 33.3 16.6 9.9

Host Build Perf (Mprims/s) 211.8 249.7 166.1 308.3 312.6 193.8

PLOC++ Two-Level

Host (ms) 18.6 40.2 13.4 38.5 19.1 11.1

Device (ms) 16.8 38.0 12.0 36.2 17.3 9.6

Host Build Perf (Mprims/s) 261.4 261.1 210.9 321.6 349.6 260.8

2
Performance varies by use, configuration and other factors. Learn more on the https://edc.intel.com/content/www/us/en/

products/performance/benchmarks/overview/ Performance Index site. Results may vary. No product or component can be

absolutely secure. Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,

fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course

of dealing, or usage in trade. Intel technologies may require enabled hardware, software or service activation. © Intel

Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names

and brands may be claimed as the property of others.
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