skip to main content
10.1145/3544548.3580929acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Honorable Mention

Understanding Wheelchair Users’ Preferences for On-Body, In-Air, and On-Wheelchair Gestures

Published:19 April 2023Publication History

ABSTRACT

We present empirical results from a gesture elicitation study conducted with eleven wheelchair users that proposed on-body, in-air, and on-wheelchair gestures to effect twenty-one referents representing common actions, types of digital content, and navigation commands for interactive systems. We report a large preference for on-body (47.6%) and in-air (40.7%) compared to on-wheelchair (11.7%) gestures, mostly represented by touch input on different parts of the body and hand poses performed in mid-air with one hand. Following an agreement analysis that revealed low consensus (≤ 5.5%) between users, although high perceived gesture ease, goodness, and social acceptability within users, we examine our participants’ gesture characteristics in relation to their self-reported motor impairments, e.g., low strength, rapid fatigue, etc. We highlight the need for personalized gesture sets, tailored to and reflective of both users’ preferences and specific motor abilities, an implication that we examine through the lenses of ability-based design.

Footnotes

  1. 1 According to the normative data report of Andrews et al. [2] based on 8,841 respondents, individuals scoring between 20 and 100 on the WHODAS scale are in the top 10% of the population distribution likely to have clinically significant disabilities.

    Footnote
  2. 2 For reasons of coding simplicity, we considered McNeill’s [61] “center-center” included in the “center” region.

    Footnote
  3. 3 Center and eight subregions for periphery and extreme periphery; see Figure 2, right.

    Footnote
  4. 4 Terminology and abbreviations used by McNeill [61, p. 379] for gesture coding, which we adopt for consistency purposes.

    Footnote
  5. 5 AC1 is a more stable coefficient of agreement than Cohen’s κ; see [28]. We used the irrCAC R package to compute AC1.

    Footnote
  6. 6 The seven head gestures (7/231=3.0%) observed in our study included turning the head left (P10), up (a gesture that P8 proposed for two referents), down (P8), and back (P8), eyes wide open (P9), and taking a deep breath (P6), respectively.

    Footnote
  7. 7 Kendall’s τ [38] measures the ordinal association between two quantities and is preferable to other measures based on concordant and discordant pairs; see [1, p. 191]. The τb variant [39] is adjusted for ties. According to https://www.spss-tutorials.com/kendalls-tau/#kendalls-tau-interpretation, a value of .21 indicates a “medium” association and .35 a “strong” one. We report only τb coefficients that are above the “medium” threshold.

    Footnote
Skip Supplemental Material Section

Supplemental Material

3544548.3580929-video-preview.mp4

mp4

10.7 MB

3544548.3580929-talk-video.mp4

mp4

60.2 MB

References

  1. Alan Agresti. 2010. Analysis of Ordinal Categorical Data(2nd ed.). John Wiley & Sons, New Jersey, USA. https://doi.org/10.1002/9780470594001Google ScholarGoogle ScholarCross RefCross Ref
  2. Gavin Andrews, Alice Kemp, Matthew Sunderland, Michael Von Korff, and Tevik Bedirhan Ustun. 2009. Normative Data for the 12 Item WHO Disability Assessment Schedule 2.0. PLoS ONE 4, 12 (2009), 8343. http://doi.org/10.1371/journal.pone.0008343Google ScholarGoogle ScholarCross RefCross Ref
  3. Lisa Anthony, YooJin Kim, and Leah Findlater. 2013. Analyzing User-Generated Youtube Videos to Understand Touchscreen Use by People with Motor Impairments. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’13). ACM, New York, NY, USA, 1223–1232. https://doi.org/10.1145/2470654.2466158Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Lisa Anthony, Radu-Daniel Vatavu, and Jacob O. Wobbrock. 2013. Understanding the Consistency of Users’ Pen and Finger Stroke Gesture Articulation. In Proceedings of Graphics Interface(GI ’13). Canadian Inf. Proc. Soc., Canada, 87–94. https://dl.acm.org/doi/10.5555/2532129.2532145Google ScholarGoogle Scholar
  5. Caroline Appert and Shumin Zhai. 2009. Using Strokes as Command Shortcuts: Cognitive Benefits and Toolkit Support. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’09). ACM, New York, NY, USA, 2289–2298. https://dl.acm.org/doi/10.1145/1518701.1519052Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Yuki Asai, Yuta Ueda, Ryuichi Enomoto, Daisuke Iwai, and Kosuke Sato. 2016. ExtendedHand on Wheelchair. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology(UIST ’16 Adjunct). ACM, New York, NY, USA, 147–148. https://doi.org/10.1145/2984751.2985738Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1 (2015), 1–48. http://dx.doi.org/10.18637/jss.v067.i01Google ScholarGoogle ScholarCross RefCross Ref
  8. Thomas Baudel and Michel Beaudouin-Lafon. 1993. Charade: Remote Control of Objects Using Free-Hand Gestures. Commun. ACM 36, 7 (1993), 28–35. https://doi.org/10.1145/159544.159562Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Joanna Bergström and Kasper Hornbæk. 2019. Human-Computer Interaction on the Skin. Comput. Surveys 52, 4, Article 77 (2019), 14 pages. https://doi.org/10.1145/3332166Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Laura-Bianca Bilius and Radu-Daniel Vatavu. 2021. A Multistudy Investigation of Drivers and Passengers’ Gesture and Voice Input Preferences for In-Vehicle Interactions. Journal of Intelligent Transportation Systems 25, 2 (2021), 197–220. https://doi.org/10.1080/15472450.2020.1846127Google ScholarGoogle ScholarCross RefCross Ref
  11. Shyam Boriah, Varun Chandola, and Vipin Kumar. 2008. Similarity Measures for Categorical Data: A Comparative Evaluation. In Proceedings of the SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, USA, 243–254. https://doi.org/10.1137/1.9781611972788.22Google ScholarGoogle ScholarCross RefCross Ref
  12. Baptiste Caramiaux, Nicola Montecchio, Atau Tanaka, and Frédéric Bevilacqua. 2014. Adaptive Gesture Recognition with Variation Estimation for Interactive Systems. ACM Trans. Interact. Intell. Syst. 4, 4, Article 18(2014), 34 pages. https://doi.org/10.1145/2643204Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Patrick Carrington, Jian-Ming Chang, Kevin Chang, Catherine Hornback, Amy Hurst, and Shaun K. Kane. 2016. The Gest-Rest Family: Exploring Input Possibilities for Wheelchair Armrests. ACM Trans. Accessible Computing 8, 3, Article 12(2016), 24 pages. https://doi.org/10.1145/2873062Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Patrick Carrington, Amy Hurst, and Shaun K. Kane. 2014. Wearables and Chairables: Inclusive Design of Mobile Input and Output Techniques for Power Wheelchair Users. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’14). ACM, New York, NY, USA, 3103–3112. https://doi.org/10.1145/2556288.2557237Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jessica R. Cauchard, Jane L. E, Kevin Y. Zhai, and James A. Landay. 2015. Drone & Me: An Exploration into Natural Human-Drone Interaction. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing(UbiComp ’15). ACM, New York, NY, USA, 361–365. https://doi.org/10.1145/2750858.2805823Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ke-Yu Chen, Daniel Ashbrook, Mayank Goel, Sung-Hyuck Lee, and Shwetak Patel. 2014. AirLink: Sharing Files between Multiple Devices Using in-Air Gestures. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing(UbiComp ’14). ACM, New York, NY, USA, 565–569. https://doi.org/10.1145/2632048.2632090Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Wenqiang Chen, Lin Chen, Kenneth Wan, and John Stankovic. 2020. A Smartwatch Product Provides On-Body Tapping Gestures Recognition: Demo Abstract. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems(SenSys ’20). ACM, New York, NY, USA, 589–590. https://doi.org/10.1145/3384419.3430444Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Seah Kangyu Clara, Tan En Si Ruth, Ian Gibson, and Gao Zhan. 2007. Experimental Investigation and Computer Simulation of Wheelchair Cushions. In Proceedings of the 1st International Convention on Rehabilitation Engineering & Assistive Technology: In Conjunction with 1st Tan Tock Seng Hospital Neurorehabilitation Meeting(i-CREATe ’07). ACM, New York, NY, USA, 249–256. https://doi.org/10.1145/1328491.1328553Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Bill Contoyannis, Jenna Davis, Megumi Ito, and Fiona Swan. 2008. Determination of the Vertical Centre of Mass of a Wheelchair and Occupant. In Proceedings of the 2nd International Convention on Rehabilitation Engineering & Assistive Technology(iCREATe ’08). Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre, Midview City, SGP, 39–42. https://dl.acm.org/doi/10.5555/1983222.1983234Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. William Delamare, Thomas Janssoone, Céline Coutrix, and Laurence Nigay. 2016. Designing 3D Gesture Guidance: Visual Feedback and Feedforward Design Options. In Proceedings of the International Working Conference on Advanced Visual Interfaces(AVI ’16). ACM, New York, NY, USA, 152–159. https://doi.org/10.1145/2909132.2909260Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jane L. E, Ilene L. E, James A. Landay, and Jessica R. Cauchard. 2017. Drone & Wo: Cultural Influences on Human-Drone Interaction Techniques. In Proceedings of the CHI Conference on Human Factors in Computing Systems(CHI ’17). ACM, New York, NY, USA, 6794–6799. https://doi.org/10.1145/3025453.3025755Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mingming Fan, Zhen Li, and Franklin Mingzhe Li. 2021. Eyelid Gestures for People with Motor Impairments. Commun. ACM 65, 1 (2021), 108–115. https://doi.org/10.1145/3498367Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Leah Findlater, Alex Jansen, Kristen Shinohara, Morgan Dixon, Peter Kamb, Joshua Rakita, and Jacob O. Wobbrock. 2010. Enhanced Area Cursors: Reducing Fine Pointing Demands for People with Motor Impairments. In Proc. of the 23nd Annual ACM Symposium on User Interface Software and Technology(UIST ’10). ACM, New York, NY, USA, 153–162. https://doi.org/10.1145/1866029.1866055Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Euan Freeman, Stephen Brewster, and Vuokko Lantz. 2016. Do That, There: An Interaction Technique for Addressing In-Air Gesture Systems. In Proceedings of the CHI Conference on Human Factors in Computing Systems(CHI ’16). ACM, New York, NY, USA, 2319–2331. https://doi.org/10.1145/2858036.2858308Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Giulia Galli, Jean-Paul Noel, Elisa Canzoneri, Olaf Blanke, and Andrea Serino. 2015. The Wheelchair as a Full-Body Tool Extending the Peripersonal Space. Frontiers in Psychology 6 (2015), 639:1–639:11. https://doi.org/10.3389/fpsyg.2015.00639Google ScholarGoogle ScholarCross RefCross Ref
  26. Bogdan-Florin Gheran, Jean Vanderdonckt, and Radu-Daniel Vatavu. 2018. Gestures for Smart Rings: Empirical Results, Insights, and Design Implications. In Proceedings of the Designing Interactive Systems Conference(DIS ’18). ACM, New York, NY, USA, 623–635. https://doi.org/10.1145/3196709.3196741Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Bogdan-Florin Gheran, Santiago Villarreal-Narvaez, Radu-Daniel Vatavu, and Jean Vanderdonckt. 2022. RepliGES and GEStory: Visual Tools for Systematizing and Consolidating Knowledge on User-Defined Gestures. In Proceedings of the International Conference on Advanced Visual Interfaces(AVI ’22). ACM, New York, NY, USA, 5:1–5:9. https://doi.org/10.1145/3531073.3531112Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kilem Li Gwet. 2010. Computing Inter-Rater Reliability and Its Variance in the Presence of High Agreement. Brit. J. Math. Statist. Psych. 61 (2010), 29–48. https://doi.org/10.1348/000711006X126600Google ScholarGoogle ScholarCross RefCross Ref
  29. Chris Harrison, Hrvoje Benko, and Andrew D. Wilson. 2011. OmniTouch: Wearable Multitouch Interaction Everywhere. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology(UIST ’11). ACM, New York, NY, USA, 441–450. https://doi.org/10.1145/2047196.2047255Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Chris Harrison and Haakon Faste. 2014. Implications of Location and Touch for On-Body Projected Interfaces. In Proceedings of the Conference on Designing Interactive Systems(DIS ’14). ACM, New York, NY, USA, 543–552. https://doi.org/10.1145/2598510.2598587Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Chris Harrison, Shilpa Ramamurthy, and Scott E. Hudson. 2012. On-Body Interaction: Armed and Dangerous. In Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction(TEI ’12). ACM, New York, NY, USA, 69–76. https://doi.org/10.1145/2148131.2148148Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Niels Henze, Enrico Rukzio, and Susanne Boll. 2011. 100,000,000 Taps: Analysis and Improvement of Touch Performance in the Large. In Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services(MobileHCI ’11). ACM, New York, NY, USA, 133–142. https://doi.org/10.1145/2037373.2037395Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Kasper Hornbæk, Søren S. Sander, Javier Andrés Bargas-Avila, and Jakob Grue Simonsen. 2014. Is Once Enough? On the Extent and Content of Replications in Human-Computer Interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’14). ACM, New York, NY, USA, 3523–3532. https://doi.org/10.1145/2556288.2557004Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Xiaozhu Hu, Jiting Wang, Weiwei Gao, Chun Yu, and Yuanchun Shi. 2021. FootUI: Assisting People with Upper Body Motor Impairments to Use Smartphones with Foot Gestures on the Bed. In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems(CHI EA ’21). ACM, New York, NY, USA, 436:1–436:7. https://doi.org/10.1145/3411763.3451782Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Shuo Jiang, Peiqi Kang, Xinyu Song, Benny P.L. Lo, and Peter B. Shull. 2022. Emerging Wearable Interfaces and Algorithms for Hand Gesture Recognition: A Survey. IEEE Reviews in Biomedical Engineering 15 (2022), 85–102. https://doi.org/10.1109/RBME.2021.3078190Google ScholarGoogle ScholarCross RefCross Ref
  36. Ankit Kamal, Yang Li, and Edward Lank. 2014. Teaching Motion Gestures via Recognizer Feedback. In Proceedings of the 19th International Conference on Intelligent User Interfaces(IUI ’14). ACM, New York, NY, USA, 73–82. https://doi.org/10.1145/2557500.2557521Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Shaun K. Kane, Jacob O. Wobbrock, and Richard E. Ladner. 2011. Usable Gestures for Blind People: Understanding Preference and Performance. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’11). ACM, New York, NY, USA, 413–422. https://doi.org/10.1145/1978942.1979001Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Maurice G. Kendall. 1938. A New Measure of Rank Correlation. Biometrika 30(1938), 81–93. https://doi.org/10.1093/biomet/30.1-2.81Google ScholarGoogle ScholarCross RefCross Ref
  39. Maurice G. Kendall. 1945. The Treatment of Ties in Rank Problems. Biometrika 33(1945), 239–251. https://doi.org/10.1093/biomet/33.3.239Google ScholarGoogle ScholarCross RefCross Ref
  40. Frederic Kerber, Markus Löchtefeld, Antonio Krüger, Jess McIntosh, Charlie McNeill, and Mike Fraser. 2016. Understanding Same-Side Interactions with Wrist-Worn Devices. In Proceedings of the 9th Nordic Conference on Human-Computer Interaction(NordiCHI ’16). ACM, New York, NY, USA, Article 28, 10 pages. https://doi.org/10.1145/2971485.2971519Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Nguyen Kim-Tien, Nguyen Truong-Thinh, and Trinh Duc Cuong. 2013. A Method for Controlling Wheelchair Using Hand Gesture Recognition. In Robot Intelligence Technology and Applications, J.H. Kim, E. Matson, H. Myung, and P. Xu (Eds.). Vol. 208. Springer, Berlin, Heidelberg, 961–970. https://doi.org/10.1007/978-3-642-37374-9_93Google ScholarGoogle ScholarCross RefCross Ref
  42. Panayiotis Koutsabasis and Panagiotis Vogiatzidakis. 2019. Empirical Research in Mid-Air Interaction: A Systematic Review. International Journal of Human-Computer Interaction 35, 18(2019), 1747–1768. https://doi.org/10.1080/10447318.2019.1572352Google ScholarGoogle ScholarCross RefCross Ref
  43. Michael Julian Kronester, Andreas Riener, and Teo Babic. 2021. Potential of Wrist-Worn Vibrotactile Feedback to Enhance the Perception of Virtual Objects during Mid-Air Gestures. In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems(CHI EA ’21). ACM, New York, NY, USA, 256:1–256:7. https://doi.org/10.1145/3411763.3451655Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Ananda S. Kundu, Oishee Mazumder, Prasanna Kumar Lenka, and Subhasis Bhaumik. 2018. Hand Gesture Recognition Based Omnidirectional Wheelchair Control Using IMU and EMG Sensors. Journal of Intelligent & Robotic Systems 91, 3-4 (sep 2018), 529–541. https://doi.org/10.1007/s10846-017-0725-0Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Mohammed Kutbi, Xiaoxue Du, Yizhe Chang, Bo Sun, Nikolaos Agadakos, Haoxiang Li, Gang Hua, and Philippos Mordohai. 2021. Usability Studies of an Egocentric Vision-Based Robotic Wheelchair. J. Hum.-Robot Interact. 10, 1, Article 4(2021), 23 pages. https://doi.org/10.1145/3399434Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Christine Kühnel, Tilo Westermann, Fabian Hemmert, Sven Kratz, Alexander Müller, and Sebastian Möller. 2011. I’m home: Defining and evaluating a gesture set for smart-home control. International Journal of Human-Computer Studies 69, 11 (2011), 693–704. https://doi.org/10.1016/j.ijhcs.2011.04.005Google ScholarGoogle ScholarCross RefCross Ref
  47. Gierad Laput, Robert Xiao, and Chris Harrison. 2016. ViBand: High-Fidelity Bio-Acoustic Sensing Using Commodity Smartwatch Accelerometers. In Proc. of the 29th Annual Symposium on User Interface Software and Technology(UIST ’16). ACM, New York, NY, USA, 321–333. https://doi.org/10.1145/2984511.2984582Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Jean-Yves Lionel Lawson, Jean Vanderdonckt, and Radu-Daniel Vatavu. 2018. Mass-Computer Interaction for Thousands of Users and Beyond. In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems(CHI EA ’18). ACM, New York, NY, USA, Article LBW032, 6 pages. https://doi.org/10.1145/3170427.3188465Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Jesse Leaman and Hung Manh La. 2017. A Comprehensive Review of Smart Wheelchairs: Past, Present, and Future. IEEE Transactions on Human-Machine Systems 47, 4 (2017), 486–499. https://doi.org/10.1109/THMS.2017.2706727Google ScholarGoogle ScholarCross RefCross Ref
  50. Sang-Su Lee, Sohyun Kim, Bopil Jin, Eunji Choi, Boa Kim, Xu Jia, Daeeop Kim, and Kun-pyo Lee. 2010. How Users Manipulate Deformable Displays as Input Devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’10). ACM, New York, NY, USA, 1647–1656. https://doi.org/10.1145/1753326.1753572Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Yang Li. 2010. Gesture Search: A Tool for Fast Mobile Data Access. In Proc. of the 23nd Annual ACM Symposium on User Interface Software and Technology(UIST ’10). ACM, New York, NY, USA, 87–96. https://doi.org/10.1145/1866029.1866044Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Dekang Lin. 1998. An Information-Theoretic Definition of Similarity. In Proceedings of the 15th International Conference on Machine Learning(ICML ’98). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 296–304. https://dl.acm.org/doi/10.5555/645527.657297Google ScholarGoogle Scholar
  53. Jing Liu and Manolya Kavakli. 2010. A Survey of Speech-Hand Gesture Recognition for the Development of Multimodal Interfaces in Computer Games. In Proceedings of the IEEE International Conference on Multimedia and Expo. IEEE, USA, 1564–1569. https://doi.org/10.1109/ICME.2010.5583252Google ScholarGoogle ScholarCross RefCross Ref
  54. Mona Hosseinkhani Loorak, Wei Zhou, Ha Trinh, Jian Zhao, and Wei Li. 2019. Hand-Over-Face Input Sensing for Interaction with Smartphones through the Built-in Camera. In Proceedings of the 21st International Conference on Human-Computer Interaction with Mobile Devices and Services(MobileHCI ’19). ACM, New York, NY, USA, 32:1–32:12. https://doi.org/10.1145/3338286.3340143Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Kelly Mack, Emma McDonnell, Dhruv Jain, Lucy Lu Wang, Jon E. Froehlich, and Leah Findlater. 2021. What Do We Mean by “Accessibility Research”? A Literature Survey of Accessibility Papers in CHI and ASSETS from 1994 to 2019. In Proceedings of the CHI Conference on Human Factors in Computing Systems(CHI ’21). ACM, New York, NY, USA, Article 371, 18 pages. https://doi.org/10.1145/3411764.3445412Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Rui Neves Madeira, Nuno Correia, Ana Cláudia Dias, Marco Guerra, Octavian Postolache, and Gabriela Postolache. 2011. Designing Personalized Therapeutic Serious Games for a Pervasive Assistive Environment. In Proceedings of the 1st IEEE International Conference on Serious Games and Applications for Health(SeGAH ’11). IEEE, USA, 1–10. https://doi.org/10.1109/SeGAH.2011.6165465Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Meethu Malu, Pramod Chundury, and Leah Findlater. 2018. Exploring Accessible Smartwatch Interactions for People with Upper Body Motor Impairments. In Proceedings of the CHI Conference on Human Factors in Computing Systems(CHI ’18). ACM, New York, NY, USA, Article 488, 12 pages. https://doi.org/10.1145/3173574.3174062Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Meethu Malu and Leah Findlater. 2015. Personalized, Wearable Control of a Head-Mounted Display for Users with Upper Body Motor Impairments. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems(CHI ’15). ACM, New York, NY, USA, 221–230. https://doi.org/10.1145/2702123.2702188Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Denys J. C. Matthies, Simon T. Perrault, Bodo Urban, and Shengdong Zhao. 2015. Botential: Localizing On-Body Gestures by Measuring Electrical Signatures on the Human Skin. In Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services(MobileHCI ’15). ACM, New York, NY, USA, 207–216. https://doi.org/10.1145/2785830.2785859Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Dan Mauney, Jonathan Howarth, Andrew Wirtanen, and Miranda Capra. 2010. Cultural Similarities and Differences in User-Defined Gestures for Touchscreen User Interfaces. In Proceedings of CHI Extended Abstracts on Human Factors in Computing Systems(CHI EA ’10). ACM, New York, NY, USA, 4015–4020. https://doi.org/10.1145/1753846.1754095Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. David McNeill. 1992. Hand and Mind: What Gestures Reveal About Thought. Vol. 27. University of Chicago Press, Chicago.Google ScholarGoogle Scholar
  62. Kyle Montague, Hugo Nicolau, and Vicki L. Hanson. 2014. Motor-Impaired Touchscreen Interactions in the Wild. In Proceedings of the 16th International ACM SIGACCESS Conference on Computers & Accessibility(ASSETS ’14). ACM, New York, NY, USA, 123–130. https://doi.org/10.1145/2661334.2661362Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Dafne Zuleima Morgado Ramirez and Catherine Holloway. 2017. "But, I Don’t Want/Need a Power Wheelchair": Toward Accessible Power Assistance for Manual Wheelchairs. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility(ASSETS ’17). ACM, New York, NY, USA, 120–129. https://doi.org/10.1145/3132525.3132529Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Martez E. Mott, Radu-Daniel Vatavu, Shaun K. Kane, and Jacob O. Wobbrock. 2016. Smart Touch: Improving Touch Accuracy for People with Motor Impairments with Template Matching. In Proceedings of the CHI Conference on Human Factors in Computing Systems(CHI ’16). ACM, New York, NY, USA, 1934–1946. https://doi.org/10.1145/2858036.2858390Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Adiyan Mujibiya, Xiang Cao, Desney S. Tan, Dan Morris, Shwetak N. Patel, and Jun Rekimoto. 2013. The Sound of Touch: On-Body Touch and Gesture Sensing Based on Transdermal Ultrasound Propagation. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces(ITS ’13). ACM, New York, NY, USA, 189–198. https://doi.org/10.1145/2512349.2512821Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Miguel A. Nacenta, Yemliha Kamber, Yizhou Qiang, and Per Ola Kristensson. 2013. Memorability of Pre-Designed and User-Defined Gesture Sets. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’13). ACM, New York, NY, USA, 1099–1108. https://doi.org/10.1145/2470654.2466142Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Maia Naftali and Leah Findlater. 2014. Accessibility in Context: Understanding the Truly Mobile Experience of Smartphone Users with Motor Impairments. In Proceedings of the 16th International ACM SIGACCESS Conference on Computers & Accessibility(ASSETS ’14). ACM, New York, NY, USA, 209–216. https://doi.org/10.1145/2661334.2661372Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Uran Oh and Leah Findlater. 2014. Design of and Subjective Response to On-Body Input for People with Visual Impairments. In Proceedings of the 16th International ACM SIGACCESS Conference on Computers & Accessibility(ASSETS ’14). ACM, New York, NY, USA, 115–122. https://doi.org/10.1145/2661334.2661376Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Thammathip Piumsomboon, Adrian Clark, Mark Billinghurst, and Andy Cockburn. 2013. User-Defined Gestures for Augmented Reality. In Extended Abstracts on Human Factors in Computing Systems(CHI EA ’13). ACM, New York, NY, USA, 955–960. https://doi.org/10.1145/2468356.2468527Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Katrin Plaumann, Milos Babic, Tobias Drey, Witali Hepting, Daniel Stooss, and Enrico Rukzio. 2018. Improving Input Accuracy on Smartphones for Persons Who Are Affected by Tremor Using Motion Sensors. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 4, Article 156 (2018), 30 pages. https://doi.org/10.1145/3161169Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Julie Rico and Stephen Brewster. 2010. Usable Gestures for Mobile Interfaces: Evaluating Social Acceptability. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’10). ACM, New York, NY, USA, 887–896. https://doi.org/10.1145/1753326.1753458Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Jaime Ruiz, Yang Li, and Edward Lank. 2011. User-Defined Motion Gestures for Mobile Interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’11). ACM, New York, NY, USA, 197–206. https://doi.org/10.1145/1978942.1978971Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Michele Scandola, Gaetano Tieri, R. Avesani, Massimo Brambilla, Salvatore Aglioti, and Valentina Moro. 2019. Embodying Their Own Wheelchair Modifies Extrapersonal Space Perception in People with Spinal Cord Injury. Exp. Brain Res. 237(2019), 2621–2632. https://doi.org/10.1007/s00221-019-05618-8Google ScholarGoogle ScholarCross RefCross Ref
  74. Ovidiu-Andrei Schipor and Radu-Daniel Vatavu. 2018. Invisible, Inaudible, and Impalpable: Users’ Preferences and Memory Performance for Digital Content in Thin Air. IEEE Pervasive Computing 17, 04 (2018), 76–85. https://doi.org/10.1109/MPRV.2018.2873856Google ScholarGoogle ScholarCross RefCross Ref
  75. Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, Andrew Blake, Mat Cook, and Richard Moore. 2013. Real-Time Human Pose Recognition in Parts from Single Depth Images. Commun. ACM 56, 1 (2013), 116–124. https://doi.org/10.1145/2398356.2398381Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Corten C. Singer and Björn Hartmann. 2019. See-Thru: Towards Minimally Obstructive Eye-Controlled Wheelchair Interfaces. In Proceedings of the 21st International ACM SIGACCESS Conference on Computers and Accessibility(ASSETS ’19). ACM, New York, NY, USA, 459–469. https://doi.org/10.1145/3308561.3353802Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Jie Song, Gábor Sörös, Fabrizio Pece, Sean Ryan Fanello, Shahram Izadi, Cem Keskin, and Otmar Hilliges. 2014. In-Air Gestures around Unmodified Mobile Devices. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology(UIST ’14). ACM, New York, NY, USA, 319–329. https://doi.org/10.1145/2642918.2647373Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Lee Stearns, Uran Oh, Leah Findlater, and Jon E. Froehlich. 2018. TouchCam: Realtime Recognition of Location-Specific On-Body Gestures to Support Users with Visual Impairments. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 4, Article 164 (2018), 23 pages. https://doi.org/10.1145/3161416Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Kashmiri Stec and Lars Bo Larsen. 2018. Gestures for Controlling a Moveable TV. In Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video(TVX ’18). ACM, New York, NY, USA, 5–14. https://doi.org/10.1145/3210825.3210831Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Eugene M. Taranta II, Corey R. Pittman, Mehran Maghoumi, Mykola Maslych, Yasmine M. Moolenaar, and Joseph J. Laviola Jr. 2021. Machete: Easy, Efficient, and Precise Continuous Custom Gesture Segmentation. ACM Trans. Comput.-Hum. Interact. 28, 1, Article 5(2021), 46 pages. https://doi.org/10.1145/3428068Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Amit Ranjan Trivedi, Abhash Kumar Singh, Sundara Tejaswi Digumarti, Deepak Fulwani, and Swagat Kumar. 2013. Design and Implementation of a Smart Wheelchair. In Proceedings of Conference on Advances In Robotics(AIR ’13). ACM, New York, NY, USA, 1–6. https://doi.org/10.1145/2506095.2506140Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Katherine Tsui, Holly Yanco, David Kontak, and Linda Beliveau. 2008. Development and Evaluation of a Flexible Interface for a Wheelchair Mounted Robotic Arm. In Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction(HRI ’08). ACM, New York, NY, USA, 105–112. https://doi.org/10.1145/1349822.1349837Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Hajime Uchiyama, Michael A. Covington, and Walter D. Potter. 2008. Vibrotactile Glove Guidance for Semi-Autonomous Wheelchair Operations. In Proceedings of the 46th Annual Southeast Regional Conference on XX(ACM-SE 46). ACM, New York, NY, USA, 336–339. https://doi.org/10.1145/1593105.1593195Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Ovidiu-Ciprian Ungurean and Radu-Daniel Vatavu. 2022. "I Gave up Wearing Rings:" Insights on the Perceptions and Preferences of Wheelchair Users for Interactions With Wearables. IEEE Pervasive Computing 21, 3 (2022), 92–101. https://doi.org/10.1109/MPRV.2022.3155952Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Radu-Daniel Vatavu. 2019. The Dissimilarity-Consensus Approach to Agreement Analysis in Gesture Elicitation Studies. In Proceedings of the CHI Conference on Human Factors in Computing Systems(CHI ’19). ACM, New York, NY, USA, Article 224, 13 pages. https://doi.org/10.1145/3290605.3300454Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. 2014. Gesture Heatmaps: Understanding Gesture Performance with Colorful Visualizations. In Proceedings of the 16th International Conference on Multimodal Interaction(ICMI ’14). ACM, New York, NY, USA, 172–179. https://doi.org/10.1145/2663204.2663256Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Radu-Daniel Vatavu and Ovidiu-Ciprian Ungurean. 2019. Stroke-Gesture Input for People with Motor Impairments: Empirical Results & Research Roadmap. In Proceedings of the CHI Conference on Human Factors in Computing Systems(CHI ’19). ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/3290605.3300445Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Radu-Daniel Vatavu and Ovidiu-Ciprian Ungurean. 2022. Understanding Gesture Input Articulation with Upper-Body Wearables for Users with Upper-Body Motor Impairments. In Proceedings of the CHI Conference on Human Factors in Computing Systems(CHI ’22). ACM, New York, NY, USA, 2:1–2:16. https://doi.org/10.1145/3491102.3501964Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Radu-Daniel Vatavu, Ovidiu-Ciprian Ungurean, and Laura-Bianca Bilius. 2022. Interactive Public Displays and Wheelchair Users: Between Direct, Personal and Indirect, Assisted Interaction. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology(UIST ’22). ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3526113.3545662Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Radu-Daniel Vatavu and Jacob O. Wobbrock. 2022. Clarifying Agreement Calculations and Analysis for End-User Elicitation Studies. ACM Trans. Comput.-Hum. Interact. 29, 1, Article 5 (jan 2022), 70 pages. https://doi.org/10.1145/3476101Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Santiago Villarreal-Narvaez, Jean Vanderdonckt, Radu-Daniel Vatavu, and Jacob O. Wobbrock. 2020. A Systematic Review of Gesture Elicitation Studies: What Can We Learn from 216 Studies?. In Proceedings of the ACM Designing Interactive Systems Conference. ACM, New York, NY, USA, 855–872. https://doi.org/10.1145/3357236.3395511Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Andrew D. Wilson and Aaron F. Bobick. 2000. Realtime Online Adaptive Gesture Recognition. In Proceedings of the 15th International Conference on Pattern Recognition(ICPR ’00, Vol. 1). IEEE, USA, 270–275. https://doi.org/10.1109/ICPR.2000.905317Google ScholarGoogle ScholarCross RefCross Ref
  93. Jacob O. Wobbrock, Htet Htet Aung, Brandon Rothrock, and Brad A. Myers. 2005. Maximizing the Guessability of Symbolic Input. In CHI ’05 Extended Abstracts on Human Factors in Computing Systems(CHI EA ’05). ACM, New York, NY, USA, 1869–1872. https://doi.org/10.1145/1056808.1057043Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Jacob O. Wobbrock, Krzysztof Z. Gajos, Shaun K. Kane, and Gregg C. Vanderheiden. 2018. Ability-Based Design. Commun. ACM 61, 6 (may 2018), 62–71. https://doi.org/10.1145/3148051Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Jacob O. Wobbrock, Shaun K. Kane, Krzysztof Z. Gajos, Susumu Harada, and Jon Froehlich. 2011. Ability-Based Design: Concept, Principles and Examples. ACM Trans. Access. Comput. 3, 3, Article 9 (apr 2011), 27 pages. https://doi.org/10.1145/1952383.1952384Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson. 2009. User-Defined Gestures for Surface Computing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’09). ACM, New York, NY, USA, 1083–1092. https://doi.org/10.1145/1518701.1518866Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. World Health Organization. 2010. Fact Sheet on Wheelchairs. https://apps.who.int/iris/handle/10665/205041Google ScholarGoogle Scholar
  98. World Health Organization. 2010. Measuring Health and Disability Manual for WHO Disability Assessment Schedule WHODAS 2.0. https://www.who.int/publications/i/item/measuring-health-and-disability-manual-for-who-disability-assessment-schedule-(-whodas-2.0)Google ScholarGoogle Scholar
  99. World Health Organization & United Nations Children’s Fund (UNICEF). 2022. Global Report on Assistive Technology. https://apps.who.int/iris/handle/10665/354357Google ScholarGoogle Scholar
  100. Huiyue Wu, Liuqingqing Yang, Shengqian Fu, and Xiaolong (Luke) Zhang. 2019. Beyond Remote Control: Exploring Natural Gesture Inputs for Smart TV Systems. Journal of Ambient Intelligence and Smart Environments 11, 4(2019), 335–354. https://doi.org/10.3233/AIS-190528Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Xuhai Xu, Haitian Shi, Xin Yi, WenJia Liu, Yukang Yan, Yuanchun Shi, Alex Mariakakis, Jennifer Mankoff, and Anind K. Dey. 2020. EarBuddy: Enabling On-Face Interaction via Wireless Earbuds. In Proceedings of the CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376836Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Huizhong Ye, Chi-Jung Lee, Te-Yen Wu, Xing-Dong Yang, Bing-Yu Chen, and Rong-Hao Liang. 2022. Body-Centric NFC: Body-Centric Interaction with NFC Devices Through Near-Field Enabled Clothing. In Designing Interactive Systems Conference(DIS ’22). ACM, New York, NY, USA, 1626–1639. https://doi.org/10.1145/3532106.3534569Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Ionuţ-Alexandru Zaiţi, Ştefan Gheorghe Pentiuc, and Radu-Daniel Vatavu. 2015. On Free-Hand TV Control: Experimental Results on User-Elicited Gestures with Leap Motion. Personal and Ubiquitous Computing 19, 5-6 (2015), 821–838. https://doi.org/10.1007/s00779-015-0863-yGoogle ScholarGoogle ScholarCross RefCross Ref
  104. Xuan Zhao, Mingming Fan, and Teng Han. 2022. “I Don’t Want People to Look At Me Differently”: Designing User-Defined Above-the-Neck Gestures for People with Upper Body Motor Impairments. In Proceedings of the CHI Conference on Human Factors in Computing Systems(CHI ’22). ACM, New York, NY, USA, Article 1, 15 pages. https://doi.org/10.1145/3491102.3517552Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Understanding Wheelchair Users’ Preferences for On-Body, In-Air, and On-Wheelchair Gestures

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        View Full Text

        HTML Format

        View this article in HTML Format .

        View HTML Format