skip to main content
10.1145/3544548.3581353acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

InflatableMod: Untethered and Reconfigurable Inflatable Modules for Tabletop-sized Pneumatic Physical Interfaces

Published:19 April 2023Publication History

ABSTRACT

Inflatable systems have been attracting attention in the field of interaction design. Conventional tabletop-sized pneumatic systems tend to be complex because they require bulky and noisy equipment. Therefore, several liquid-to-gas phase change actuators that use vaporization have been proposed. But these actuators have problems with controllability, reusability, and reconfigurability. In this study, we propose InflatableMod, novel inflatable modules based on the efficient control of liquid-to-gas phase change actuators. These are designed with a compact circuit that has a liquid transfer function to feed the required amount of low-boiling-point liquid into the pouch and a heating function to inflate the pouch by the volume change. This approach allows for a compact, silent, and untethered inflatable system. It is also possible to create an untethered and reconfigurable multi-inflatable system because each module is synchronized. In this paper, we propose the design of the modules, evaluate their performance, and present application scenarios.

Skip Supplemental Material Section

Supplemental Material

3544548.3581353-video-preview.mp4

mp4

23.3 MB

3544548.3581353-talk-video.mp4

mp4

253.7 MB

3544548.3581353-video-figure.mp4

mp4

152.1 MB

References

  1. Tomoki Abe, Shoichiro Koizumi, Hiroyuki Nabae, Gen Endo, Koichi Suzumori, Nao Sato, Michiko Adachi, and Fumi Takamizawa. 2019. Fabrication of “18 Weave” Muscles and Their Application to Soft Power Support Suit for Upper Limbs Using Thin McKibben Muscle. IEEE Robotics and Automation Letters 4, 3 (2019), 2532–2538. https://doi.org/10.1109/LRA.2019.2907433Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Programmable Air.2021. Retrieved August 27, 2021 from https://www.programmableair.com/.Google ScholarGoogle Scholar
  3. Tetsuya Akagi, Shujiro Dohta, Shinsaku Fujimoto, Yasuyuki Tsuji, and Yuto Fujiwara. 2015. Development of Flexible Thin Actuator Driven by Low Boiling Point Liquid. International Journal of Materials Science and Engineering (01 2015), 55–59. https://doi.org/10.12720/ijmse.3.1.55-59Google ScholarGoogle ScholarCross RefCross Ref
  4. Jason Alexander, Anne Roudaut, Jürgen Steimle, Kasper Hornbæk, Miguel Bruns Alonso, Sean Follmer, and Timothy Merritt. 2018. Grand Challenges in Shape-Changing Interface Research. Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3173574.3173873Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. P. Atten and J. Seyed-Yagoobi. 2003. Electrohydrodynamically induced dielectric liquid flow through pure conduction in point/plane geometry. IEEE Transactions on Dielectrics and Electrical Insulation 10, 1(2003), 27–36. https://doi.org/10.1109/TDEI.2003.1176555Google ScholarGoogle ScholarCross RefCross Ref
  6. Vito Cacucciolo, Hiroyuki Nabae, Koichi Suzumori, and Herbert Shea. 2020. Electrically-Driven Soft Fluidic Actuators Combining Stretchable Pumps With Thin McKibben Muscles. Frontiers in Robotics and AI 6 (2020), 146. https://doi.org/10.3389/frobt.2019.00146Google ScholarGoogle ScholarCross RefCross Ref
  7. Vito Cacucciolo, Jun Shintake, Yu Kuwajima, Shingo Maeda, Dario Floreano, and Herbert Shea. 2019. Stretchable pumps for soft machines. Nature 572, 7770 (2019), 516–519. https://doi.org/10.1038/s41586-019-1479-6Google ScholarGoogle ScholarCross RefCross Ref
  8. Yu-Wen Chen, Wei-Ju Lin, Yi Chen, and Lung-Pan Cheng. 2021. PneuSeries: 3D Shape Forming with Modularized Serial-Connected Inflatables. Association for Computing Machinery, New York, NY, USA, 431–440. https://doi.org/10.1145/3472749.3474760Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J Darabi and K Ekula. 2003. Development of a chip-integrated micro cooling device. Microelectronics Journal 34, 11 (2003), 1067–1074. https://doi.org/10.1016/j.mejo.2003.09.010Google ScholarGoogle ScholarCross RefCross Ref
  10. Alexandra Delazio, Ken Nakagaki, Roberta L. Klatzky, Scott E. Hudson, Jill Fain Lehman, and Alanson P. Sample. 2018. Force Jacket: Pneumatically-Actuated Jacket for Embodied Haptic Experiences. Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173894Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] 3M Novec 7000 engineered fluid.2022. Retrieved March 9, 2022 from https://multimedia.3m.com/mws/media/121372O/3m-novec-7000-engineered-fluid-tds.pdf.Google ScholarGoogle Scholar
  12. [12] 3M Novec 7100 engineered fluid.2022. Retrieved March 10, 2022 from https://multimedia.3m.com/mws/media/104167O/3mtm-novectm-7100dl-engineered-fluid.pdf.Google ScholarGoogle Scholar
  13. [13] 3M Novec 7300 engineered fluid.2022. Retrieved March 10, 2022 from https://multimedia.3m.com/mws/media/338713O/3m-novec-7300-engineered-fluid.pdf.Google ScholarGoogle Scholar
  14. Juri Fujii, Takuya Matsunobu, and Yasuaki Kakehi. 2018. COLORISE: Shape- and Color-Changing Pixels with Inflatable Elastomers and Interactions. In Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction (Stockholm, Sweden) (TEI ’18). Association for Computing Machinery, New York, NY, USA, 199–204. https://doi.org/10.1145/3173225.3173228Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Emmanouil D Fylladitakis, Michael P Theodoridis, and Antonios X Moronis. 2014. Review on the history, research, and applications of electrohydrodynamics. IEEE Transactions on Plasma Science 42, 2 (2014), 358–375.Google ScholarGoogle ScholarCross RefCross Ref
  16. Jesse T. Gonzalez and Scott E. Hudson. 2022. Layer by Layer, Patterned Valves Enable Programmable Soft Surfaces. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 1, Article 12 (mar 2022), 25 pages. https://doi.org/10.1145/3517251Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Seiya Hirai, Tatsuho Nagatomo, Takefumi Hiraki, Hiroki Ishizuka, Yoshihiro Kawahara, and Norihisa Miki. 2021. Micro Elastic Pouch Motors: Elastically Deformable and Miniaturized Soft Actuators Using Liquid-to-Gas Phase Change. IEEE Robotics and Automation Letters 6, 3 (2021), 5373–5380. https://doi.org/10.1109/LRA.2021.3075102Google ScholarGoogle ScholarCross RefCross Ref
  18. Takefumi Hiraki, Kenichi Nakahara, Koya Narumi, Ryuma Niiyama, Noriaki Kida, Naoki Takamura, Hiroshi Okamoto, and Yoshihiro Kawahara. 2020. Laser Pouch Motors: Selective and Wireless Activation of Soft Actuators by Laser-Powered Liquid-to-Gas Phase Change. IEEE Robotics and Automation Letters 5, 3 (2020), 4180–4187. https://doi.org/10.1109/LRA.2020.2982864Google ScholarGoogle ScholarCross RefCross Ref
  19. Tatsuhiro Hiramitsu, Koichi Suzumori, Hiroyuki Nabae, and Gen Endo. 2019. Experimental Evaluation of Textile Mechanisms Made of Artificial Muscles. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). 1–6. https://doi.org/10.1109/ROBOSOFT.2019.8722802Google ScholarGoogle ScholarCross RefCross Ref
  20. Donal Holland, Colette Abah, Marielena Velasco Enriquez, Maxwell Herman, Gareth Bennett, Emir Vela, and Conor Walsh. 2017. The Soft Robotics Toolkit: Strategies for Overcoming Obstacles to the Wide Dissemination of Soft-Robotic Hardware. IEEE Robotics & Automation Magazine PP (02 2017), 1–1. https://doi.org/10.1109/MRA.2016.2639067Google ScholarGoogle ScholarCross RefCross Ref
  21. David Holman and Roel Vertegaal. 2008. Organic User Interfaces: Designing Computers in Any Way, Shape, or Form. Commun. ACM 51, 6 (jun 2008), 48–55. https://doi.org/10.1145/1349026.1349037Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ozgun Kilic Afsar, Ali Shtarbanov, Hila Mor, Ken Nakagaki, Jack Forman, Karen Modrei, Seung Hee Jeong, Klas Hjort, Kristina Höök, and Hiroshi Ishii. 2021. OmniFiber: Integrated Fluidic Fiber Actuators for Weaving Movement Based Interactions into the ‘Fabric of Everyday Life’. Association for Computing Machinery, New York, NY, USA, 1010–1026. https://doi.org/10.1145/3472749.3474802Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hyunyoung Kim, Aluna Everitt, Carlos Tejada, Mengyu Zhong, and Daniel Ashbrook. 2021. MorpheesPlug: A Toolkit for Prototyping Shape-Changing Interfaces. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 101, 13 pages. https://doi.org/10.1145/3411764.3445786Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Yu Kuwajima, Hiroki Shigemune, Vito Cacucciolo, Matteo Cianchetti, Cecilia Laschi, and Shingo Maeda. 2017. Active suction cup actuated by ElectroHydroDynamics phenomenon. IEEE International Conference on Intelligent Robots and Systems 2017-Septe, September (2017), 470–475. https://doi.org/10.1109/IROS.2017.8202195Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Qiuyu Lu, Jifei Ou, João Wilbert, André Haben, Haipeng Mi, and Hiroshi Ishii. 2019. MilliMorph – Fluid-Driven Thin Film Shape-Change Materials for Interaction Design. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology(New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 663–672. https://doi.org/10.1145/3332165.3347956Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Takafumi Morita, Yu Kuwajima, Ayato Minaminosono, Shingo Maeda, and Yasuaki Kakehi. 2022. HydroMod : Constructive Modules for Prototyping Hydraulic Physical Interfaces. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 393, 14 pages. https://doi.org/10.1145/3491102.3502096Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kenichi Nakahara, Koya Narumi, Ryuma Niiyama, and Yoshihiro Kawahara. 2017. Electric phase-change actuator with inkjet printed flexible circuit for printable and integrated robot prototyping. In 2017 IEEE International Conference on Robotics and Automation (ICRA). 1856–1863. https://doi.org/10.1109/ICRA.2017.7989217Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ryosuke Nakayama, Ryo Suzuki, Satoshi Nakamaru, Ryuma Niiyama, Yoshihiro Kawahara, and Yasuaki Kakehi. 2019. MorphIO: Entirely Soft Sensing and Actuation Modules for Programming Shape Changes through Tangible Interaction. In Proceedings of the 2019 on Designing Interactive Systems Conference (San Diego, CA, USA) (DIS ’19). Association for Computing Machinery, New York, NY, USA, 975–986. https://doi.org/10.1145/3322276.3322337Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Koya Narumi, Hiroki Sato, Kenichi Nakahara, Young ah Seong, Kunihiko Morinaga, Yasuaki Kakehi, Ryuma Niiyama, and Yoshihiro Kawahara. 2020. Liquid Pouch Motors: Printable Planar Actuators Driven by Liquid-to-Gas Phase Change for Shape-Changing Interfaces. IEEE Robotics and Automation Letters 5, 3 (2020), 3915–3922. https://doi.org/10.1109/LRA.2020.2983681Google ScholarGoogle ScholarCross RefCross Ref
  30. Ryuma Niiyama, Hiroki Sato, Kazzmasa Tsujimura, Koya Narumi, Young ah Seong, Ryosuke Yamamura, Yasuaki Kakehi, and Yoshihiro Kawahara. 2020. Poimo: Portable and Inflatable Mobility Devices Customizable for Personal Physical Characteristics. Association for Computing Machinery, New York, NY, USA, 912–923. https://doi.org/10.1145/3379337.3415894Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Jifei Ou, Felix Heibeck, and Hiroshi Ishii. 2016. TEI 2016 Studio: Inflated Curiosity. In Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction (Eindhoven, Netherlands) (TEI ’16). Association for Computing Machinery, New York, NY, USA, 766–769. https://doi.org/10.1145/2839462.2854119Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Jifei Ou, Mélina Skouras, Nikolaos Vlavianos, Felix Heibeck, Chin-Yi Cheng, Jannik Peters, and Hiroshi Ishii. 2016. AeroMorph - Heat-Sealing Inflatable Shape-Change Materials for Interaction Design. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology(Tokyo, Japan) (UIST ’16). Association for Computing Machinery, New York, NY, USA, 121–132. https://doi.org/10.1145/2984511.2984520Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ahmed Ould El Moctar, Nadine Aubry, and John Batton. 2003. Electro-hydrodynamic micro-fluidic mixer. Lab on a Chip 3, 4 (2003), 273–280. https://doi.org/10.1039/b306868bGoogle ScholarGoogle ScholarCross RefCross Ref
  34. Marianne Graves Petersen, Majken Kirkegaard Rasmussen, and Johan Trettvik. 2020. Affordances of Shape-Changing Interfaces: An Information Perspective on Transformability and Movement. Association for Computing Machinery, New York, NY, USA, 1959–1971. https://doi.org/10.1145/3357236.3395521Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. William F. Pickard. 1963. Ion Drag Pumping. I. Theory. Journal of Applied Physics 34, 2 (1963), 246–250. https://doi.org/10.1063/1.1702592Google ScholarGoogle ScholarCross RefCross Ref
  36. William F. Pickard. 1963. Ion Drag Pumping. II. Experiment. Journal of Applied Physics 34, 2 (1963), 251–258. https://doi.org/10.1063/1.1702593Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Pneuduino.2021. Retrieved August 27, 2021 from https://pneuduino.org/.Google ScholarGoogle Scholar
  38. Axel Richter and Hermann Sandmaier. 1990. An electrohydrodynamic micropump. In IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.IEEE, New York, NY, USA, 99–104.Google ScholarGoogle ScholarCross RefCross Ref
  39. Vanessa Sanchez, Christopher Payne, Daniel Preston, Jonathan Alvarez, James Weaver, Aslı Atalay, Mustafa Boyvat, Daniel Vogt, Robert Wood, George Whitesides, and Conor Walsh. 2020. Smart Thermally Actuating Textiles. Advanced Materials Technologies 5 (07 2020), 2000383. https://doi.org/10.1002/admt.202000383Google ScholarGoogle ScholarCross RefCross Ref
  40. Harpreet Sareen, Udayan Umapathi, Patrick Shin, Yasuaki Kakehi, Jifei Ou, Hiroshi Ishii, and Pattie Maes. 2017. Printflatables: Printing Human-Scale, Functional and Dynamic Inflatable Objects. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 3669–3680. https://doi.org/10.1145/3025453.3025898Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Hiroki Sato, Young ah Seong, Ryosuke Yamamura, Hiromasa Hayashi, Katsuhiro Hata, Hisato Ogata, Ryuma Niiyama, and Yoshihiro Kawahara. 2020. Soft yet Strong Inflatable Structures for a Foldable and Portable Mobility. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems(Honolulu, HI, USA) (CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–4. https://doi.org/10.1145/3334480.3383147Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Orit Shaer and Eva Hornecker. 2010. Tangible User Interfaces: Past, Present, and Future Directions. Foundations and Trends® in Human–Computer Interaction 3, 1–2(2010), 4–137. https://doi.org/10.1561/1100000026Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Data sheet mp6 micropump.2022. Retrieved December 13, 2022 from https://www.servoflo.com/images/PDF/mp6_micropumps_datasheet.pdf.Google ScholarGoogle Scholar
  44. Ali Shtarbanov. 2021. FlowIO Development Platform – the Pneumatic “Raspberry Pi” for Soft Robotics. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3411763.3451513Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Ryo Suzuki, Ryosuke Nakayama, Dan Liu, Yasuaki Kakehi, Mark D. Gross, and Daniel Leithinger. 2019. LiftTiles: Modular and Reconfigurable Room-Scale Shape Displays through Retractable Inflatable Actuators. In The Adjunct Publication of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 30–32. https://doi.org/10.1145/3332167.3357105Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Ryo Suzuki, Ryosuke Nakayama, Dan Liu, Yasuaki Kakehi, Mark D. Gross, and Daniel Leithinger. 2020. LiftTiles: Constructive Building Blocks for Prototyping Room-Scale Shape-Changing Interfaces. In Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction (Sydney NSW, Australia) (TEI ’20). Association for Computing Machinery, New York, NY, USA, 143–151. https://doi.org/10.1145/3374920.3374941Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Shan-Yuan Teng, Tzu-Sheng Kuo, Chi Wang, Chi-huan Chiang, Da-Yuan Huang, Liwei Chan, and Bing-Yu Chen. 2018. PuPoP: Pop-up Prop on Palm for Virtual Reality. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany) (UIST ’18). Association for Computing Machinery, New York, NY, USA, 5–17. https://doi.org/10.1145/3242587.3242628Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Shan-Yuan Teng, Cheng-Lung Lin, Chi-huan Chiang, Tzu-Sheng Kuo, Liwei Chan, Da-Yuan Huang, and Bing-Yu Chen. 2019. TilePoP: Tile-Type Pop-up Prop for Virtual Reality. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 639–649. https://doi.org/10.1145/3332165.3347958Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. [49] Toio.2022. Retrieved August 30, 2022 from https://toio.io/.Google ScholarGoogle Scholar
  50. Yasuyuki Tsuji, Shujiro Dohta, Tetsuya Akagi, and Yuto Fujiwara. 2016. Analysis of Flexible Thin Actuator Using Gas–Liquid Phase-Change of Low Boiling Point Liquid. Vol. 345. 67–73. https://doi.org/10.1007/978-3-319-17314-6_9Google ScholarGoogle ScholarCross RefCross Ref
  51. Ryusei Uramune, Hiroki Ishizuka, Takefumi Hiraki, Yoshihiro Kawahara, Sei Ikeda, and Osamu Oshiro. 2020. HaPouch: Soft and Wearable Haptic Display Devices Using Liquid-to-Gas Phase Change Actuator. In Adjunct Publication of the 33rd Annual ACM Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST ’20 Adjunct). Association for Computing Machinery, New York, NY, USA, 53–55. https://doi.org/10.1145/3379350.3416183Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Ryusei Uramune, Hiroki Ishizuka, Takefumi Hiraki, Yoshihiro Kawahara, Sei Ikeda, and Osamu Oshiro. 2022. HaPouch: A Miniaturized, Soft, and Wearable Haptic Display Device Using a Liquid-to-Gas Phase Change Actuator. IEEE Access 10(2022), 16830–16842. https://doi.org/10.1109/ACCESS.2022.3141385Google ScholarGoogle ScholarCross RefCross Ref
  53. Lining Yao, Ryuma Niiyama, Jifei Ou, Sean Follmer, Clark Della Silva, and Hiroshi Ishii. 2013. PneUI: Pneumatically Actuated Soft Composite Materials for Shape Changing Interfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (St. Andrews, Scotland, United Kingdom) (UIST ’13). Association for Computing Machinery, New York, NY, USA, 13–22. https://doi.org/10.1145/2501988.2502037Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Xinlei Zhang, Ali Shtarbanov, Jiani Zeng, Valerie K. Chen, V. Michael Bove, Pattie Maes, and Jun Rekimoto. 2019. Bubble: Wearable Assistive Grasping Augmentation Based on Soft Inflatables. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI EA ’19). Association for Computing Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/3290607.3312868Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. InflatableMod: Untethered and Reconfigurable Inflatable Modules for Tabletop-sized Pneumatic Physical Interfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text

    HTML Format

    View this article in HTML Format .

    View HTML Format