skip to main content
10.1145/3544548.3581535acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Honorable Mention

Living with Sound Zones: A Long-term Field Study of Dynamic Sound Zones in a Domestic Context

Published:19 April 2023Publication History

ABSTRACT

Sound zone technology enables multiple people to have personal and shared listening experiences without disturbing each other. Methods for constructing sound zones have now matured enough to allow installations outside of experimental laboratories, making it essential for further development to conduct empirical studies about how people adopt, use, and interact with sound zones in, e.g., domestic settings. To that end, we conducted a four-week field study with a sound zone system in five households. Through an inductive reflexive thematic analysis, we identify three themes relating to 1) experiencing sound zones in everyday life, 2) sound zone usage patterns in households, and 3) interacting with sound zones. Based on these themes, we discuss how sound zones can be used to manage sound in homes in new ways to allow for better social coexistence and listening experiences. We present four directions for future HCI research and interaction design to comply with user needs and considerations when using this novel technology.

Skip Supplemental Material Section

Supplemental Material

3544548.3581535-video-figure.mp4

mp4

177.9 MB

3544548.3581535-talk-video.mp4

mp4

154.9 MB

References

  1. Petter Alexanderson and Konrad Tollmar. 2006. Being and Mixing: Designing Interactive Soundscapes. In Proceedings of the 4th Nordic Conference on Human-Computer Interaction: Changing Roles (Oslo, Norway) (NordiCHI ’06). Association for Computing Machinery, New York, NY, USA, 252–261. https://doi.org/10.1145/1182475.1182502Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barry Arons. 1992. A review of the cocktail party effect. Journal of the American Voice I/O society 12, 7 (1992), 35–50. https://www.media.mit.edu/speech/papers/1992/arons_AVIOSJ92_cocktail_party_effect.pdfGoogle ScholarGoogle Scholar
  3. L. Baillie, D. Benyon, C. Macaulay, and M. G. Petersen. 2003. Investigating Design Issues in Household Environments. Cognition, Technology & Work 5, 1 (April 2003), 33–43. https://doi.org/10.1007/s10111-002-0116-5Google ScholarGoogle ScholarCross RefCross Ref
  4. Terence Betlehem, Wen Zhang, Mark A. Poletti, and Thushara D. Abhayapala. 2015. Personal sound zones: Delivering interface-free audio to multiple listeners. IEEE Signal Processing Magazine 32, 2 (2015), 81–91. https://doi.org/10.1109/MSP.2014.2360707Google ScholarGoogle ScholarCross RefCross Ref
  5. Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative Research in Psychology 3, 2 (2006), 77–101. https://doi.org/10.1191/1478088706qp063oaGoogle ScholarGoogle ScholarCross RefCross Ref
  6. V. Braun and V. Clarke. 2021. Thematic Analysis: A Practical Guide. SAGE Publications, London, England.Google ScholarGoogle Scholar
  7. Stephen A. Brewster. 1998. Using Nonspeech Sounds to Provide Navigation Cues. ACM Trans. Comput.-Hum. Interact. 5, 3 (Sept. 1998), 224–259. https://doi.org/10.1145/292834.292839Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ji-Ho Chang, Chan-Hui Lee, Jin-Young Park, and Yang-Hann Kim. 2009. A realization of sound focused personal audio system using acoustic contrast control. The Journal of the Acoustical Society of America 125, 4 (2009), 2091–2097. https://doi.org/10.1121/1.3082114Google ScholarGoogle ScholarCross RefCross Ref
  9. Jordan Cheer and Stephen Elliott. 2013. Design and implementation of a personal audio system in a car cabin. Proceedings of Meetings on Acoustics 19, 2013 (2013), 055009. https://doi.org/10.1121/1.4798948Google ScholarGoogle ScholarCross RefCross Ref
  10. Joung-Woo Choi and Yang-Hann Kim. 2002. Generation of an acoustically bright zone with an illuminated region using multiple sources. The Journal of the Acoustical Society of America 111, 4 (2002), 1695–1700. https://doi.org/10.1121/1.1456926Google ScholarGoogle ScholarCross RefCross Ref
  11. Luke Dahl and Ge Wang. 2010. Sound Bounce : Physical Metaphors in Designing Mobile Music Performance. In Proceedings of the International Conference on New Interfaces for Musical Expression. NIME, Sydney, Australia, 178–181. https://doi.org/10.5281/zenodo.1177751Google ScholarGoogle ScholarCross RefCross Ref
  12. Erik de Lima Andrade, Darllan Collins da Cunha e Silva, Eligelcy Augusta de Lima, Renan Angrizani de Oliveira, Paulo Henrique Trombetta Zannin, and Antônio Cesar Germano Martins. 2021. Environmental noise in hospitals: a systematic review. Environmental Science and Pollution Research 28, 16 (2021), 19629–19642. https://doi.org/10.1007/s11356-021-13211-2Google ScholarGoogle ScholarCross RefCross Ref
  13. W.F. Druyvesteyn and J. Garas. 1997. Personal sound. Journal of the Audio Engineering Society 45, 9 (1997), 685–701. https://doi.org/10.1121/1.410932Google ScholarGoogle ScholarCross RefCross Ref
  14. Mary Jane Esplen, Bev Foster, Sarah Pearson, Jiahui Wong, Chelsea Mackinnon, Isabel Shamsudeen, and Katharine Cecchin. 2020. A survey of oncology healthcare professionals’ knowledge and attitudes toward the use of music as a therapeutic tool in healthcare. Supportive Care in Cancer 28, 1 (2020), 381–388. https://doi.org/10.1007/s00520-019-04812-2Google ScholarGoogle ScholarCross RefCross Ref
  15. Peter Fröhlich, Matthias Baldauf, Thomas Meneweger, Ingrid Erickson, Manfred Tscheligi, Thomas Gable, Boris de Ruyter, and Fabio Paternò. 2019. Everyday Automation Experience: Non-Expert Users Encountering Ubiquitous Automated Systems. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI EA ’19). Association for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3290607.3299013Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Marcos F Simón Gálvez, Stephen J Elliott, and Jordan Cheer. 2014. Personal audio loudspeaker array as a complementary TV sound system for the hard of hearing. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 97, 9 (2014), 1824–1831. https://doi.org/10.1587/transfun.E97.A.1824Google ScholarGoogle ScholarCross RefCross Ref
  17. William W Gaver. 1986. Auditory icons: Using sound in computer interfaces. Human-computer interaction 2, 2 (1986), 167–177. https://doi.org/10.1207/s15327051hci0202_3Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Gabriel Haas, Evgeny Stemasov, Michael Rietzler, and Enrico Rukzio. 2020. Interactive Auditory Mediated Reality: Towards User-Defined Personal Soundscapes. Association for Computing Machinery, New York, NY, USA, 2035–2050. https://doi.org/10.1145/3357236.3395493Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gabriel Haas, Evgeny Stemasov, and Enrico Rukzio. 2018. Can’t You Hear Me? Investigating Personal Soundscape Curation. In Proceedings of the 17th International Conference on Mobile and Ubiquitous Multimedia (Cairo, Egypt) (MUM 2018). Association for Computing Machinery, New York, NY, USA, 59–69. https://doi.org/10.1145/3282894.3282897Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Franz M. Heuchel, Diego Caviedes Nozal, Finn T. Agerkvist, and Jonas Brunskog. 2018. Sound field control for reduction of noise from outdoor concerts, In Audio Engineering Society Convention 145. 145th Audio Engineering Society International Convention, AES 2018 1, 145 (Oct 2018), 9. http://www.aes.org/e-lib/browse.cfm?elib=19833Google ScholarGoogle Scholar
  21. Finn Jacobsen, Martin Olsen, Martin Møller, and Finn T. Agerkvist. 2011. A comparison of two strategies for generating sound zones in a room.. In Proceedings of 18th International Congress on Sound and Vibration, Vol. 140. International Institute of Acoustics and Vibration, Rio de Janeiro, Brazil, 2134–2144. https://doi.org/10.1121/1.4963084Google ScholarGoogle ScholarCross RefCross Ref
  22. Rune Møberg Jacobsen, Stine S Johansen, Niels van Berkel, Mikael B. Skov, and Jesper Kjeldskov. 2022. In the Zone! — Controlling and Visualising Sound Zones. In Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans). ACM, USA, Article 189, 4 pages. https://doi.org/10.1145/3491101.3519898Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rune Møberg Jacobsen, Niels van Berkel, Mikael B. Skov, Stine S Johansen, and Jesper Kjeldskov. 2022. Do You See What I Hear? — Peripheral Absolute and Relational Visualisation Techniques for Sound Zones. In CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 294, 13 pages. https://doi.org/10.1145/3491102.3501938Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Stine S. Johansen, Rune Møberg Jacobsen, Mikael B. Skov, and Jesper Kjeldskov. 2022. Contextual and Informational Aspects of Sound Zone Visualisations. In Proceedings of the 17th International Audio Mostly Conference (St. Pölten, Austria) (AM ’22). Association for Computing Machinery, New York, NY, USA, 88–91. https://doi.org/10.1145/3561212.3561240Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Stine S Johansen, Timothy Merritt, Rune Møberg Jacobsen, Peter Axel Nielsen, and Jesper Kjeldskov. 2022. Investigating Potentials of Shape-Changing Displays for Sound Zones. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 293, 12 pages. https://doi.org/10.1145/3491102.3517632Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Stine Schmieg Johansen and Peter Axel Nielsen. 2019. Personalised Soundscapes in Homes. In Proceedings of the 2019 on Designing Interactive Systems Conference (San Diego, CA, USA) (DIS ’19). Association for Computing Machinery, New York, NY, USA, 813–822. https://doi.org/10.1145/3322276.3322364Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Stine Schmieg Johansen, Peter Axel Nielsen, and Jesper Kjeldskov. 2019. Interaction Design for Domestic Sound Zones. In Proceedings of the 14th International Audio Mostly Conference: A Journey in Sound (Nottingham, United Kingdom) (AM’19). Association for Computing Machinery, New York, NY, USA, 248–251. https://doi.org/10.1145/3356590.3356630Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Stine S. Johansen, Peter Axel Nielsen, Kashmiri Stec, and Jesper Kjeldskov. 2021. Experiences of Personal Sound Technologies. In Human-Computer Interaction – INTERACT 2021. Springer International Publishing, Cham, 523–541. https://doi.org/10.1007/978-3-030-85616-8_30Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Sergi Jordà, Günter Geiger, Marcos Alonso, and Martin Kaltenbrunner. 2007. The ReacTable: Exploring the Synergy between Live Music Performance and Tabletop Tangible Interfaces. In Proceedings of the 1st International Conference on Tangible and Embedded Interaction (Baton Rouge, Louisiana) (TEI ’07). Association for Computing Machinery, New York, NY, USA, 139–146. https://doi.org/10.1145/1226969.1226998Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Taewoong Lee, Jesper Kjær Nielsen, and Mads Græsbøll Christensen. 2020. Signal-Adaptive and Perceptually Optimized Sound Zones With Variable Span Trade-Off Filters. IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020), 2412–2426. https://doi.org/10.1109/TASLP.2020.3013397Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Taewoong Lee, Jesper Kjær Nielsen, and Mads Græsbøll Christensen. 2019. Towards Perceptually Optimized Sound Zones: A Proof-of-concept Study. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Brighton, UK, 136–140. https://doi.org/10.1109/ICASSP.2019.8682902Google ScholarGoogle ScholarCross RefCross Ref
  32. Taewoong Lee, Jesper Kjaer Nielsen, Jesper Rindom Jensen, and Mads Graesboll Christensen. 2018. A unified approach to generating sound zones using variable span linear filters. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings 2018-April (2018), 491–495. https://doi.org/10.1109/ICASSP.2018.8462477Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tuck W. Leong and Peter C. Wright. 2013. Revisiting Social Practices Surrounding Music. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Paris, France) (CHI ’13). Association for Computing Machinery, New York, NY, USA, 951–960. https://doi.org/10.1145/2470654.2466122Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Stine S Lundgaard, Peter Axel Nielsen, and Jesper Kjeldskov. 2022. Designing for domestic sound zone interaction. Personal and Ubiquitous Computing 26, 4 (2022), 1225–1236. https://doi.org/10.1007/s00779-020-01387-2Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Aadil Mamuji, Roel Vertegaal, Changuk Sohn, and Daniel Cheng. 2005. Attentive Headphones: Augmenting Conversational Attention with a Real World TiVo. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, Portland, Oregon, USA, 2223–2226. http://www.absolutedc.com/resources/pdf/attentiveheadphones.pdfGoogle ScholarGoogle Scholar
  36. Mark McGill, Stephen Brewster, David McGookin, and Graham Wilson. 2020. Acoustic Transparency and the Changing Soundscape of Auditory Mixed Reality. Association for Computing Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/3313831.3376702Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Microsoft Research Blog. 2007. Personal Audio Space: The Headphones Experience sans Headphones. https://www.microsoft.com/en-us/research/blog/personal-audio-space-headphones-experience-sans-headphones/Google ScholarGoogle Scholar
  38. Jörg Müller, Matthias Geier, Christina Dicke, and Sascha Spors. 2014. The BoomRoom: Mid-Air Direct Interaction with Virtual Sound Sources. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14). Association for Computing Machinery, New York, NY, USA, 247–256. https://doi.org/10.1145/2556288.2557000Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Jörg Müller, Matthias Geier, Christina Dicke, and Sascha Spors. 2014. The BoomRoom: Mid-Air Direct Interaction with Virtual Sound Sources. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14). Association for Computing Machinery, New York, NY, USA, 247–256. https://doi.org/10.1145/2556288.2557000Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Martin Bo Møller and Martin Olsen. 2016. Sound Zones: On Performance Prediction of Contrast Control Methods. In Audio Engineering Society Conference: 2016 AES International Conference on Sound Field Control. AES, Guildford, UK, 0. http://www.aes.org/e-lib/browse.cfm?elib=18308Google ScholarGoogle Scholar
  41. Martin Bo Møller and Jan Østergaard. 2020. A Moving Horizon Framework for Sound Zones. IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020), 256–265. https://doi.org/10.1109/TASLP.2019.2951995Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Gerard Oleksik, David Frohlich, Lorna M. Brown, and Abigail Sellen. 2008. Sonic Interventions: Understanding and Extending the Domestic Soundscape. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Florence, Italy) (CHI ’08). Association for Computing Machinery, New York, NY, USA, 1419–1428. https://doi.org/10.1145/1357054.1357277Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Willy Passchier-Vermeer and Wim F. Passchier. 2000. Noise exposure and public health. Environmental Health Perspectives 108, SUPPL. 1 (2000), 123–131. https://doi.org/10.2307/3454637Google ScholarGoogle ScholarCross RefCross Ref
  44. A. N. Pettitt. 1979. A Non-Parametric Approach to the Change-Point Problem, In Journal of the Royal Statistical Society. Journal of the Royal Statistical Society. Series C (Applied Statistics) 28, 2, 126–135. https://doi.org/10.2307/2346729Google ScholarGoogle ScholarCross RefCross Ref
  45. PJRC. 2022. Teensy® 4.0 Development Board. https://www.pjrc.com/store/teensy40.htmlGoogle ScholarGoogle Scholar
  46. Jussi Rämö, Søren Bech, and Søren Holdt Jensen. 2018. Validating a real-time perceptual model predicting distraction caused by audio-on-audio interference. The Journal of the Acoustical Society of America 144, 1 (2018), 153–163. https://doi.org/10.1121/1.5045321Google ScholarGoogle ScholarCross RefCross Ref
  47. Ben Shirley and Tob Oldfield. 2015. Clean Audio for TV Broadcast: An Object-Based Approach for Hearing-Impaired Viewers. Journal of the Audio Engineering Society 63, 4 (april 2015), 245–256. https://doi.org/10.17743/jaes.2015.0017Google ScholarGoogle ScholarCross RefCross Ref
  48. Susan L Staples. 1996. Human response to environmental noise: Psychological research and public policy., 143–150 pages. https://doi.org/10.1037/0003-066X.51.2.143Google ScholarGoogle ScholarCross RefCross Ref
  49. Margaret Topf. 1992. Effects of personal control over hospital noise on sleep. Research in Nursing & Health 15, 1 (1992), 19–28. https://doi.org/10.1002/nur.4770150105Google ScholarGoogle ScholarCross RefCross Ref
  50. Niels van Berkel, Denzil Ferreira, and Vassilis Kostakos. 2017. The Experience Sampling Method on Mobile Devices. ACM Comput. Surv. 50, 6, Article 93 (dec 2017), 40 pages. https://doi.org/10.1145/3123988Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Suphaloet Vongkunkij, Kanit Kasitikasikum, and Santi Phithakkitnukoon. 2018. Soundscape: Sensing and Visualizing Acoustic Landscape on Campus. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers (Singapore, Singapore) (UbiComp ’18). Association for Computing Machinery, New York, NY, USA, 1069–1078. https://doi.org/10.1145/3267305.3274162Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Hildegard Westerkamp. 1974. Soundwalking. In Autumn Leaves: Sound and Environment in Artistic Practice. Number 3/4 in Sound Heritage. Double Entendre, Paris, 18–27.Google ScholarGoogle Scholar

Index Terms

  1. Living with Sound Zones: A Long-term Field Study of Dynamic Sound Zones in a Domestic Context

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
      April 2023
      14911 pages
      ISBN:9781450394215
      DOI:10.1145/3544548

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 April 2023

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text

    HTML Format

    View this article in HTML Format .

    View HTML Format