skip to main content
10.1145/3544549.3583894acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
demonstration

Demonstration of transPAF: Rendering Omnidirectional Impact Feedback with Dynamic Point of Application of Force All Round a Controller

Published:19 April 2023Publication History

ABSTRACT

Impact force is common haptic feedback on virtual reality (VR) controllers, such as hitting objects with weapons or rackets. It applies to different points of application of force (PAFs) and directions in varied scenarios. Therefore, we propose a controller, transPAF, to render omnidirectional impact feedback with dynamic PAF all round the controller for versatile VR scenarios. transPAF consists of a controller, a semicircular track, a linear track, and an impactor, which are all rotatable. The impactor can move to any position in a sphere, which means the whole 3D space all round the controller, and rotate in any direction. In the demonstration, users can use four weapons, including a sword, a pickaxe, a hook, a dagger, and a tennis racket in the VR scene to attack monsters and hit balls, so that they can feel the sensation of the impact force applied to different PAFs and directions.

Skip Supplemental Material Section

Supplemental Material

3544549.3583894-walkthrough.mp4

Walkthrough Video

mp4

218.1 MB

3544549.3583894-preview.mp4

Video Preview

mp4

67.7 MB

References

  1. Seungwoo Je, Myung Jin Kim, Woojin Lee, Byungjoo Lee, Xing-Dong Yang, Pedro Lopes, and Andrea Bianchi. 2019. Aero-Plane: A Handheld Force-Feedback Device That Renders Weight Motion Illusion on a Virtual 2D Plane. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 763–775. https://doi.org/10.1145/3332165.3347926Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Shahabedin Sagheb, Frank Wencheng Liu, Alireza Bahremand, Assegid Kidane, and Robert LiKamWa. 2019. SWISH: A Shifting-Weight Interface of Simulated Hydrodynamics for Haptic Perception of Virtual Fluid Vessels. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 751–761. https://doi.org/10.1145/3332165.3347870Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Jotaro Shigeyama, Takeru Hashimoto, Shigeo Yoshida, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2019. Transcalibur: A Weight Shifting Virtual Reality Controller for 2D Shape Rendering Based on Computational Perception Model. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3290605.3300241Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Hsin-Ruey Tsai, Yu-So Liao, and Chieh Tsai. 2022. ImpactVest: Rendering Spatio-Temporal Multilevel Impact Force Feedback on Body in VR. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 356, 11 pages. https://doi.org/10.1145/3491102.3501971Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Tzu-Yun Wei, Hsin-Ruey Tsai, Yu-So Liao, Chieh Tsai, Yi-Shan Chen, Chi Wang, and Bing-Yu Chen. 2020. ElastiLinks: Force Feedback between VR Controllers with Dynamic Points of Application of Force. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY, USA, 1023–1034. https://doi.org/10.1145/3379337.3415836Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. André Zenner and Antonio Krüger. 2017. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality. IEEE Transactions on Visualization and Computer Graphics 23, 4(2017), 1285–1294. https://doi.org/10.1109/TVCG.2017.2656978Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Demonstration of transPAF: Rendering Omnidirectional Impact Feedback with Dynamic Point of Application of Force All Round a Controller

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHI EA '23: Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems
        April 2023
        3914 pages
        ISBN:9781450394222
        DOI:10.1145/3544549

        Copyright © 2023 Owner/Author

        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 April 2023

        Check for updates

        Qualifiers

        • demonstration
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate6,164of23,696submissions,26%
      • Article Metrics

        • Downloads (Last 12 months)80
        • Downloads (Last 6 weeks)10

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      View Full Text

      HTML Format

      View this article in HTML Format .

      View HTML Format